Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(10)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32366678

RESUMO

Directional migration during embryogenesis and tumor progression faces the challenge that numerous external signals need to converge to precisely control cell movement. The Rho guanine exchange factor (GEF) Trio is especially well suited to relay signals, as it features distinct catalytic domains to activate Rho GTPases. Here, we show that Trio is required for Xenopus cranial neural crest (NC) cell migration and cartilage formation. Trio cell-autonomously controls protrusion formation of NC cells and Trio morphant NC cells show a blebbing phenotype. Interestingly, the Trio GEF2 domain is sufficient to rescue protrusion formation and migration of Trio morphant NC cells. We show that this domain interacts with the DEP/C-terminus of Dishevelled (DVL). DVL - but not a deletion construct lacking the DEP domain - is able to rescue protrusion formation and migration of Trio morphant NC cells. This is likely mediated by activation of Rac1, as we find that DVL rescues Rac1 activity in Trio morphant embryos. Thus, our data provide evidence for a novel signaling pathway, whereby Trio controls protrusion formation of cranial NC cells by interacting with DVL to activate Rac1.


Assuntos
Movimento Celular/genética , Proteínas Desgrenhadas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Crista Neural/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Proteínas Desgrenhadas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Crista Neural/embriologia , Fenótipo , Plasmídeos/genética , Ligação Proteica/genética , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Transfecção , Proteínas de Xenopus/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Curr Opin Genet Dev ; 40: 154-163, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27690213

RESUMO

Elucidating the mechanisms underlying cell fate determination, cell identity maintenance and cell reprogramming in vivo is one of the main challenges in today's science. Such knowledge of fundamental importance will further provide new leads for early diagnostics and targeted therapy approaches both in regenerative medicine and cancer research. This review focuses on recent mechanistic findings and factors that influence the differentiated state of cells in direct reprogramming events, aka transdifferentiation. In particular, we will look at the mechanistic and conceptual advances brought by the use of the nematode Caenorhabditis elegans and highlight common themes across phyla.


Assuntos
Caenorhabditis elegans/genética , Transdiferenciação Celular/genética , Reprogramação Celular/genética , Regeneração/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Humanos , Medicina Regenerativa , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
3.
Nat Commun ; 7: 10909, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952325

RESUMO

Cadherin receptors have a well-established role in cell-cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with ß1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell-matrix adhesion during cell migration.


Assuntos
Caderinas/metabolismo , Adesão Celular , Células/citologia , Adesões Focais/metabolismo , Xenopus laevis/metabolismo , Animais , Caderinas/genética , Linhagem Celular , Movimento Celular , Células/metabolismo , Fibronectinas/metabolismo , Adesões Focais/genética , Humanos , Camundongos , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Transporte Proteico , Xenopus laevis/embriologia , Xenopus laevis/genética
4.
Dev Biol ; 415(2): 383-390, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206614

RESUMO

The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo.


Assuntos
Proteínas ADAM/metabolismo , Proteínas de Membrana/metabolismo , Crista Neural/citologia , Proteínas de Xenopus/metabolismo , Animais , Sítios de Ligação , Células COS , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Movimento Celular/efeitos dos fármacos , Chlorocebus aethiops , Códon sem Sentido , Interações Hidrofóbicas e Hidrofílicas , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/fisiologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Transfecção , Proteínas de Xenopus/genética , Xenopus laevis/embriologia
5.
Integr Biol (Camb) ; 7(3): 356-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25710133

RESUMO

AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.


Assuntos
Extensões da Superfície Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Fluidez de Membrana/fisiologia , Microscopia de Força Atômica/instrumentação , Crista Neural/fisiologia , Crista Neural/ultraestrutura , Animais , Adesão Celular/fisiologia , Células Cultivadas , Módulo de Elasticidade/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Dureza/fisiologia , Micromanipulação/instrumentação , Micromanipulação/métodos , Microscopia de Força Atômica/métodos , Estresse Mecânico , Xenopus laevis
6.
Genesis ; 52(2): 120-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24339193

RESUMO

Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration.


Assuntos
Caderinas/metabolismo , Crista Neural/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Animais , Região Branquial/fisiologia , Caderinas/genética , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Precursores de Proteínas/genética , Protocaderinas , Xenopus/metabolismo , Proteínas de Xenopus/genética
7.
PLoS One ; 8(12): e85717, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24392028

RESUMO

Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo. These highly motile and multipotent cells migrate directionally on defined routes throughout the embryo. Interestingly, local cell-cell interactions seem to be the key force for directionality. CNC cells can change their migration direction by a repulsive cell response called contact inhibition of locomotion (CIL). Cell protrusions collapse upon homotypic cell-cell contact and internal repolarization leads to formation of new protrusions toward cell-free regions. Wnt/PCP signaling was shown to mediate activation of small RhoGTPase RhoA and inhibition of cell protrusions at the contact side. However, the mechanism how a cell recognizes the contact is poorly understood. Here, we demonstrate that Xenopus cadherin-11 (Xcad-11) mediated cell-cell adhesion is necessary in CIL for directional and collective migration of CNC cells. Reduction of Xcad-11 adhesive function resulted in higher invasiveness of CNC due to loss of CIL. Additionally, transplantation analyses revealed that CNC migratory behaviour in vivo is non-directional and incomplete when Xcad-11 adhesive function is impaired. Blocking Wnt/PCP signaling led to similar results underlining the importance of Xcad-11 in the mechanism of CIL and directional migration of CNC.


Assuntos
Caderinas/metabolismo , Movimento Celular , Inibição de Contato , Crista Neural/citologia , Xenopus laevis/embriologia , Animais , Adesão Celular , Crista Neural/embriologia , Crista Neural/metabolismo
8.
Arch Biochem Biophys ; 524(1): 30-42, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387375

RESUMO

Dynamically regulated cell-cell adhesion is crucial for morphogenesis during embryonic development and tumor progression. The cadherins as calcium-dependent cell-cell adhesion proteins represent key molecules in these tissue movements. How cadherins serve in maintaining tissue cohesion during migration, facilitate cell-cell communication and promote signaling will be summarized in this review.


Assuntos
Caderinas/metabolismo , Movimento Celular , Animais , Caderinas/química , Comunicação Celular , Desenvolvimento Embrionário , Gastrulação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA