Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(9): e49, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30793190

RESUMO

In most cells, transcriptionally inactive heterochromatin is preferentially localized in the nuclear periphery and transcriptionally active euchromatin is localized in the nuclear interior. Different cell types display characteristic chromatin distribution patterns, which change dramatically during cell differentiation, proliferation, senescence and different pathological conditions. Chromatin organization has been extensively studied on a cell population level, but there is a need to understand dynamic reorganization of chromatin at the single cell level, especially in live cells. We have developed a novel image analysis tool that we term Fluorescence Ratiometric Imaging of Chromatin (FRIC) to quantitatively monitor dynamic spatiotemporal distribution of euchromatin and total chromatin in live cells. A vector (pTandemH) assures stoichiometrically constant expression of the histone variants Histone 3.3 and Histone 2B, fused to EGFP and mCherry, respectively. Quantitative ratiometric (H3.3/H2B) imaging displayed a concentrated distribution of heterochromatin in the periphery of U2OS cell nuclei. As proof of concept, peripheral heterochromatin responded to experimental manipulation of histone acetylation. We also found that peripheral heterochromatin depended on the levels of the inner nuclear membrane protein Samp1, suggesting an important role in promoting peripheral heterochromatin. Taken together, FRIC is a powerful and robust new tool to study dynamic chromatin redistribution in live cells.


Assuntos
Cromatina/genética , Proteínas de Membrana/genética , Imagem Molecular/métodos , Proteínas Nucleares/genética , Acetilação , Linhagem Celular , Núcleo Celular/genética , Eucromatina/genética , Heterocromatina/genética , Histonas/genética , Humanos , Membrana Nuclear/genética , Processamento de Proteína Pós-Traducional/genética
2.
FEBS J ; 276(24): 7343-52, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19919557

RESUMO

We have previously shown that heparin can increase the activity of the proenzyme form of Alzheimer's beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). Cathepsin D (CD) is a member of the aspartic protease family and has sequence similarity to BACE1. Therefore, we examined whether heparin and other glycosaminoglycans (GAGs) can influence the activity of CD. Heparin and other GAGs were found to stimulate the activity of recombinant proCD. Desulfation of heparin almost abolished the stimulation, indicating that sulfate groups were important for the stimulatory effect. In addition, the stimulation was dependent on the length of the GAG chain, as larger GAGs were more potent in their ability to stimulate proCD than shorter fragments. In the presence of heparin, limited autocatalytic proteolysis of the proenzyme was increased, suggesting that heparin increases the activity of proCD by accelerating the conversion of proCD, which has little activity, to pseudoCD, an active form lacking residues 1-26 of the prodomain. Furthermore, the activity of spleen-derived mature CD, which lacks the entire 44 amino acid residue prodomain, was also increased by heparin, indicating that the catalytic domain of CD contains at least one region to which GAGs bind and stimulate enzyme activity. Because heparin also stimulated the activity of pseudoCD, proenzyme activation was probably accelerated by the interaction of heparin with the catalytic domain of pseudoCD. However, it is possible that heparin may also activate the proenzyme directly. On the basis of this study, we propose that GAGs may regulate CD activity in vivo.


Assuntos
Catepsina D/metabolismo , Glicosaminoglicanos/fisiologia , Ativação Enzimática , Precursores Enzimáticos/metabolismo , Heparina/análogos & derivados , Heparina/farmacologia
3.
Neurodegener Dis ; 5(3-4): 206-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18322391

RESUMO

The beta-secretase (BACE1) is initially synthesized as a partially active zymogen containing a prodomain which can be further activated through proteolytic cleavage of the prodomain by a furin-like protease. The active site of BACE1 is large and although a number of high-affinity active-site inhibitors of BACE1 have been described, most of these compounds are large, polar and do not cross the blood-brain barrier. However, it may be possible to target other regions of the protein which regulate BACE1 allosterically. We have found that proBACE1 can be stimulated by relatively low concentrations (e.g. 1 microg/ml) of heparin. Heparin initially increases proBACE1 activity, probably by binding to the prodomain, which decreases steric inhibition at the active site. However, the heparin-activated zymogen also undergoes autocatalysis, which ultimately leads to a loss of enzyme activity. We speculate that proBACE1 can be regulated by endogenous heparan sulfate proteoglycans and that drugs which target this interaction may have value in the treatment of Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/metabolismo , Proteoglicanas de Heparan Sulfato/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Proteoglicanas de Heparan Sulfato/uso terapêutico , Humanos
4.
Biochemistry ; 45(21): 6703-14, 2006 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-16716081

RESUMO

BACE1 is an aspartic protease that generates the N-terminus of the beta-amyloid protein (Alphabeta) from the beta-amyloid precursor protein (APP). BACE1 is a key target for Alzheimer drug development. However, little is known about the physiological regulation of the enzyme. Heparin can promote beta-secretase cleavage of APP in neuroblastoma cells. However, heparin has also been reported to directly inhibit BACE1 activity in vitro. To clarify the role of heparin in regulating BACE1, we examined the effect of heparin on the activity of recombinant human BACE1 (rBACE1) in vitro. Low concentrations (1 microg/mL) of heparin were found to stimulate rBACE1, increasing enzyme V(max) and decreasing the K(M). In contrast, higher concentrations of heparin (10 or 100 microg/mL) were inhibitory. Heparin affinity chromatography demonstrated that heparin interacted strongly with the zymogen form of rBACE1 and bound to a peptide homologous to the N-terminal pro sequence of BACE1. Mature (pro sequence cleaved) enzyme lacked the capacity to be stimulated by heparin, indicating that the pro domain was necessary for the stimulation by heparin. Furthermore, in the presence of stimulatory concentrations of heparin, there was an increase in autocatalytic cleavage of the protease domain and a subsequent loss of enzyme activity in vitro. Our results strongly suggest that heparin stimulates the partially active BACE1 zymogen, and we propose that the activation is mediated by high-affinity binding of heparin to the pro domain. Our study provides evidence that heparan sulfate proteoglycans could regulate the rate of Alphabeta production in vivo.


Assuntos
Doença de Alzheimer/enzimologia , Endopeptidases/metabolismo , Heparina/farmacologia , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Catálise , Cromatografia de Afinidade , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Exp Cell Res ; 293(2): 346-56, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14729472

RESUMO

During apoptosis (also called programmed cell death), the chromatin condenses and the DNA is cleaved into oligonucleosomal fragments. Caspases are believed to play a major role in nuclear apoptosis. However, the relation between dismantling of nuclear pores, disruption of the nucleocytoplasmic barrier, and nuclear entry of caspases is unclear. We have analyzed nuclear import of the green fluorescent protein fused to a nuclear localization signal (GFP-NLS) in tissue culture cells undergoing apoptosis. Decreased nuclear accumulation of GFP-NLS could be detected at the onset of nuclear apoptosis manifested as dramatic condensation and redistribution of chromatin toward the nuclear periphery. At this step, dismantling of nuclear pores was already evident as indicated by proteolysis of the nuclear pore membrane protein POM121. Thus, disruption of nuclear compartmentalization correlated with early signs of nuclear pore damage. Both these events clearly preceded massive DNA fragmentation, detected by TUNEL assay. Furthermore, we show that in apoptotic cells, POM121 is specifically cleaved at aspartate-531 in its large C-terminal portion by a caspase-3-dependent mechanism. Cleavage of the C-terminal portion of POM121, which is adjoining the nuclear pore complex, is likely to disrupt interactions with other nuclear pore proteins affecting the stability of the pore complex. A temporal correlation of apoptotic events supports a model where caspase-dependent disassembly of nuclear pores and disruption of the nucleocytoplasmic barrier paves the way for nuclear entry of caspases and subsequent activation of CAD-mediated DNA fragmentation.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Apoptose/fisiologia , Caspases/metabolismo , Citoplasma/enzimologia , Poro Nuclear/enzimologia , Animais , Ácido Aspártico/metabolismo , Caspase 3 , Linhagem Celular , Fragmentação do DNA/fisiologia , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes , Proteínas de Membrana/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína/fisiologia , Ratos
6.
Brain Res Mol Brain Res ; 119(1): 62-72, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14597230

RESUMO

Amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. The function of these three proteins is not yet fully understood. One of the proposed roles of APP is to promote neurite outgrowth. The aim of this study was to investigate the regulation of the expression levels of APP family members during neurite outgrowth. We observed that retinoic acid (RA)-induced neuronal differentiation of human SH-SY5Y cells resulted in increased expression of APP, APLP1 and APLP2. We also examined the effect of the NFkappaB, AP-1 and c-Jun N-terminal kinase inhibitor curcumin (diferuloylmethane) on the RA-induced expression levels of these proteins. We found that treatment with curcumin counteracted the RA-induced mRNA expression of all APP family members. In addition, we observed that curcumin treatment resulted in neurite retraction without any effect on cell viability. Surprisingly, curcumin had differential effects on the APLP protein levels in RA-differentiated cells. RA-induced APLP1 protein expression was blocked by curcumin, while the APLP2 protein levels were further increased. APP protein levels were not affected by curcumin treatment. We propose that the sustained levels of APP and the elevated levels of APLP2, in spite of the reduced mRNA expression, are due to altered proteolytic processing of these proteins. Furthermore, our results suggest that APLP1 does not undergo the same type of regulated processing as APP and APLP2.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Diferenciação Celular/fisiologia , Sistema Nervoso Central/embriologia , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neuroblastoma/metabolismo , Tretinoína/metabolismo , Precursor de Proteína beta-Amiloide/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Curcumina/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Neuritos/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA