Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biochimie ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936685

RESUMO

G-quadruplexes (G4s) are helical four-stranded nucleic acid structures that can form in guanine-rich sequences, which are mostly found in functional cellular regions, such as telomeres, promoters, and DNA replication origins. Great efforts are being made to target these structures towards the development of specific small molecule G4 binders for novel anti-cancer, neurological, and viral therapies. Here, we introduce an optical assay based on quenching of the intrinsic fluorescence of DNA G-quadruplexes for assessing and comparing the G4 binding affinity of various small molecule ligands in solutions. We show that the approach allows direct quantification of ligand binding to distinctive G4 topologies. We believe that this method will facilitate quick and reliable evaluation of small molecule G4 ligands and support their development.

2.
Nanoscale ; 15(3): 1317-1326, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36545884

RESUMO

Nucleic acid-based biomolecular self-assembly enables the creation of versatile functional architectures. Electrostatic screening of the negative charges of nucleic acids is essential for their folding and stability; thus, ions play a critical role in nucleic acid self-assembly in both biology and nanotechnology. However, the ion-DNA interplay and the resulting ion-specific structural integrity and responsiveness of DNA constructs are underexploited. Here, we harness a wide range of mono- and divalent ions to control the structural features of DNA origami constructs. Using atomic force microscopy and Förster resonance energy transfer (FRET) spectroscopy down to the single-molecule level, we report on the global and local structural performance and responsiveness of DNA origami constructs following self-assembly, upon post-assembly ion exchange and post-assembly ion-mediated reconfiguration. We determined the conditions for highly efficient DNA origami folding in the presence of several mono- (Li+, Na+, K+, Cs+) and divalent (Ca2+, Sr2+, Ba2+) ions, expanding the range where DNA origami structures can be exploited for custom-specific applications. We then manipulated fully folded constructs by exposing them to unfavorable ionic conditions that led to the emergence of substantial disintegrity but not to unfolding. Moreover, we found that poorly assembled nanostructures at low ion concentrations undergo substantial self-repair upon ion addition in the absence of free staple strands. This reconfigurability occurs in an ion type- and concentration-specific manner. Our findings provide a fundamental understanding of the ion-mediated structural responsiveness of DNA origami at the nanoscale enabling applications under a wide range of ionic conditions.


Assuntos
Nanoestruturas , Conformação de Ácido Nucleico , Nanoestruturas/química , DNA/química , Nanotecnologia , Íons
3.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876524

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2'-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer-spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Mutação , Testes de Neutralização , Conformação de Ácido Nucleico , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/fisiologia , Técnica de Seleção de Aptâmeros , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Methods Appl Fluoresc ; 9(3)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33910172

RESUMO

Photobleaching of single molecules has been studied using confocal fluorescence microscopy for porphycene, a porphyrin isomer, and its two derivatives. Fourfold substitution of porphycene with bulkytert-butyl groups leads to the enhancement of photostability, even though the spectral, photophysical, and redox parameters remain similar. We attribute this effect to the increase of the efficiency of physical quenching of the chromophore triplet state by oxygen, compared with the yield of chemical reaction that leads to photobleaching. Analysis of the observed photon fluxes from single emitters embedded in a polymer film shows that the experiment based on fluorescence is biased towards detection of molecules which have oxygen-the triplet quencher-in their vicinity. The distribution of the measured photodegradation quantum yields is very heterogeneous, suggesting that physical and chemical quenching rates exhibit different distance and orientation dependences.

6.
Am J Hematol ; 96(6): 659-670, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684239

RESUMO

The demand for iron is high in pregnancy to meet the increased requirements for erythropoiesis. Even pregnant females with initially iron-replete stores develop iron-deficiency anemia, due to inadequate iron absorption. In anemic females, the maternal iron supply is dedicated to maintaining iron metabolism in the fetus and placenta. Here, using a mouse model of iron deficiency in pregnancy, we show that iron recycled from senescent erythrocytes becomes a predominant source of this microelement that can be transferred to the placenta in females with depleted iron stores. Ferroportin is a key protein in the molecular machinery of cellular iron egress. We demonstrate that under iron deficiency in pregnancy, levels of ferroportin are greatly reduced in the duodenum, placenta and fetal liver, but not in maternal liver macrophages and in the spleen. Although low expression of both maternal and fetal hepcidin predicted ferroportin up-regulation in examined locations, its final expression level was very likely correlated with tissue iron status. Our results argue that iron released into the circulation of anemic females is taken up by the placenta, as evidenced by high expression of iron importers on syncytiotrophoblasts. Then, a substantial decrease in levels of ferroportin on the basolateral side of syncytiotrophoblasts, may be responsible for the reduced transfer of iron to the fetus. As attested by the lowest decrease in iron content among analyzed tissues, some part is retained in the placenta. These findings confirm the key role played by ferroportin in tuning iron turnover in iron-deficient pregnant mouse females and their fetuses.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Deficiências de Ferro , Ferro da Dieta/administração & dosagem , Fígado/metabolismo , Complicações na Gravidez/metabolismo , Baço/metabolismo , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Citocinas/sangue , Duodeno/metabolismo , Envelhecimento Eritrocítico , Índices de Eritrócitos , Feminino , Feto/metabolismo , Hemoglobinas/metabolismo , Hepcidinas/biossíntese , Hepcidinas/genética , Ferro/metabolismo , Fígado/embriologia , Macrófagos/metabolismo , Troca Materno-Fetal , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Proteínas Musculares/sangue , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Fagocitose , Placenta/metabolismo , Gravidez , Regulação para Cima
7.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260507

RESUMO

Owing to its redox properties, copper is a cofactor of enzymes that catalyze reactions in fundamental metabolic processes. However, copper-oxygen interaction, which is a source of toxic oxygen radicals generated by the Fenton reaction, makes copper a doubled-edged-sword in an oxygen environment. Among the microelements influencing male fertility, copper plays a special role because both copper deficiency and overload in the gonads worsen spermatozoa quality and disturb reproductive function in mammals. Male gametes are produced during spermatogenesis, a multi-step process that consumes large amounts of oxygen. Germ cells containing a high amount of unsaturated fatty acids in their membranes are particularly vulnerable to excess copper-mediated oxidative stress. In addition, an appropriate copper level is necessary to initiate meiosis in premeiotic germ cells. The balance between essential and toxic copper concentrations in germ cells at different stages of spermatogenesis and in Sertoli cells that support their development is handled by a network of copper importers, chaperones, recipient proteins, and exporters. Here, we describe coordinated regulation/functioning of copper-binding proteins expressed in germ and Sertoli cells with special emphasis on copper transporters, copper transporting ATPases, and SOD1, a copper-dependent antioxidant enzyme. These and other proteins assure copper bioavailability in germ cells and protection against copper toxicity.


Assuntos
Cobre/metabolismo , Gônadas/metabolismo , Homeostase , Espermatogênese , Animais , Transporte Biológico , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Masculino
8.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092142

RESUMO

In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.


Assuntos
Heme Oxigenase-1/deficiência , Hemólise , Ferro/metabolismo , Rim/metabolismo , Insuficiência Renal/metabolismo , Anemia/sangue , Anemia/terapia , Animais , Animais Recém-Nascidos , Contagem de Eritrócitos , Feminino , Heme/metabolismo , Heme Oxigenase-1/genética , Ferro/urina , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal/genética , Insuficiência Renal/terapia
9.
Sci Rep ; 9(1): 11102, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366967

RESUMO

Moderate intravascular hemolysis is a common condition in newborns. It is followed by the accumulation of bilirubin, which is a secondary product of the activity of heme oxygenase-1, an enzyme that catalyzes the breakdown of heme released from disrupted erythrocytes and taken up by hepatic macrophages. Although these cells are a major site of enzymatic heme breakdown in adults, we show here that epithelial cells of proximal tubules in the kidneys perform the functions of both heme uptake and catabolism in mouse neonates. A time-course study examining mouse pups during the neonatal period showed a gradual recovery from hemolysis, and concomitant decreases in the expression of heme-related genes and non-heme iron transporters in the proximal tubules. By adjusting the expression of iron-handling proteins in response to the disappearance of hemolysis in mouse neonates, the kidneys may play a role in the detoxification of iron and contribute to its recirculation from the primary urine to the blood.


Assuntos
Heme/metabolismo , Hemólise/fisiologia , Ferro/metabolismo , Rim/metabolismo , Animais , Bilirrubina/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo , Heme Oxigenase-1/metabolismo , Masculino , Camundongos
10.
Metallomics ; 11(6): 1079-1092, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31011744

RESUMO

Jackson toxic milk mutant mice (tx-J) carrying a missense mutation in the Atp7b gene are animal models of the Wilson disease. In both the Wilson patients and the tx-J mice, mutations in the ATP7B/Atp7b gene lead to disturbances in copper metabolism. The dysfunction of ATP7B/Atp7b leads to a reduction in the incorporation of copper into apoceruloplasmin; this decreases the ferroxidase activity of ceruloplasmin necessary for the efflux of iron from cells and reduces the release of copper from hepatocytes to the bile; this results in a massive hepatic copper accumulation. A decrease in the ferroxidase activity of ceruloplasmin in the tx-J mice emphasises the practicality of this animal model for the exploration of disturbances in iron balance triggered by dysregulation of copper metabolism. We found that 6-month-old tx-J mutants developed mild anaemia caused by functional iron deficiency. The tx-J mutants showed decreased plasma iron levels with concomitant iron accumulation in hepatocytes and liver macrophages. Hepatic iron retention was accompanied by decreased expression of the membrane form of ceruloplasmin in both liver cell types. Interestingly, in the liver of mutants, we found high levels of ferroportin (an iron exporter) on the surface of liver macrophages despite increased hepatic expression of hepcidin, a peptide inducing internalization and degradation of ferroportin. We conclude that even when the ferroportin expression is high, ceruloplasmin remains a limiting factor in the release of iron to the extracellular environment.


Assuntos
Anemia Ferropriva/metabolismo , Apoproteínas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ceruloplasmina/metabolismo , Degeneração Hepatolenticular/metabolismo , Fígado/metabolismo , Anemia Ferropriva/etiologia , Anemia Ferropriva/genética , Anemia Ferropriva/patologia , Animais , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Modelos Animais de Doenças , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/patologia , Ferro/metabolismo , Fígado/patologia , Camundongos , Mutação de Sentido Incorreto
11.
Front Immunol ; 10: 3021, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010131

RESUMO

Neutrophil extracellular traps (NETs) contribute to pathological disorders, and their release was directly linked to numerous diseases. With intravital microscopy (IVM), we showed previously that NETs also contribute to the pathology of systemic inflammation and are strongly deposited in liver sinusoids. Over a decade since NET discovery, still not much is known about the metabolic or microenvironmental aspects of their formation. Copper is a vital trace element essential for many biological processes, albeit its excess is potentially cytotoxic; thus, copper levels are tightly controlled by factors such as copper transporting ATPases, ATP7A, and ATP7B. By employing IVM, we studied the impact of copper on NET formation during endotoxemia in liver vasculature on two mice models of copper excess or deficiency, Wilson (ATP7B mutants) and Menkes (ATP7A mutants) diseases, respectively. Here, we show that respective ATP7 mutations lead to diminished NET release during systemic inflammation despite unaltered intrinsic capacity of neutrophils to cast NETs as tested ex vivo. In Menkes disease mice, the in vivo effect is mostly due to diminished neutrophil infiltration of the liver as unmutated mice with a subchronic copper deficiency release even more NETs than their controls during endotoxemia, whereas in Wilson disease mice, excess copper directly diminishes the capacity to release NETs, and this was further confirmed by ex vivo studies on isolated neutrophils co-cultured with exogenous copper and a copper-chelating agent. Taken together, the study extends our understanding on how microenvironmental factors affect NET release by showing that copper is not a prerequisite for NET release but its excess affects the trap casting by neutrophils.


Assuntos
Cobre/imunologia , Armadilhas Extracelulares/imunologia , Degeneração Hepatolenticular/imunologia , Síndrome dos Cabelos Torcidos/imunologia , Animais , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/imunologia , Modelos Animais de Doenças , Armadilhas Extracelulares/genética , Degeneração Hepatolenticular/genética , Humanos , Masculino , Síndrome dos Cabelos Torcidos/genética , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia
12.
Aerobiologia (Bologna) ; 34(1): 45-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497241

RESUMO

Air sampling was conducted in Szczecin (Poland) throughout April-September 2013. The final data set included 177 daily and 4248 hourly samples. The total of 21 types of spores, which occurred in a number >10 in the season, were taken into account. The following meteorological parameters were analyzed: air temperature, relative humidity, precipitation and wind speed. Effects of individual weather parameters on hourly and daily concentrations of different fungal spore types were examined using Spearman's rank association test, whereas effects of complex of meteorological factors on hourly and daily compositions of spore were assessed using detrended correspondence analysis (DCA) and redundancy analysis (RDA). Airborne fungal spore distribution patterns in relation to meteorological variables were determined by RDA, after DCA results detected a linear structure of the spore data. The RDA results obtained indicated that all the applied variables accounted for 20 and 22% of the total variance in the hourly and daily spore data, respectively. The results of stepwise forward selection of variables revealed all included hourly and daily meteorological variables were statistically significant. The largest amount of the total variance in the spore composition was explained by the air temperature in both cases (16%). Multivariate ordination did not show large differences between the hourly and daily relationships (with exception of wind speed impact), while the differences between simple hourly and daily correlations were more clear. Correlations between daily values of variables were in most cases higher than between hourly values of variables.

13.
Metallomics ; 9(9): 1288-1303, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28820536

RESUMO

The maintenance of copper homeostasis is critical for all cells. As learned from mice with disturbed copper metabolism, this trace element is also important for spermatogenesis. The experiments conducted in yeasts have demonstrated that appropriate copper level must be preserved to enable meiosis progression; however, increased copper level is toxic for cells. This study aims to analyze the expression profile of Atp7a and Atp7b and other genes encoding copper-related proteins during spermatogenesis in mice. Using the transcripts and protein detection techniques, we demonstrate that within seminiferous tubuli, ATP7A is mainly present in early meiotic germ cells (leptotene to pachytene spermatocytes) and in Sertoli cells (SCs). During spermatogenesis, the progression Atp7a expression profile corresponds to Slc31a1 (encoding copper importer CTR1) and Atox1 (encoding chaperon protein, which delivers copper from CTR1 to ATP7A and ATP7B) expression, suggesting that male germ cells retrieve copper and ATP7A protects them from copper overdose. In contrast, ATP7B protein is observed in SCs and near elongated spermatids; thus, its function seems to be related to copper extraction during spermiogenesis. This is the first study to give a comprehensive view on the activity of copper-related genes during spermatogenesis in mice.


Assuntos
ATPases Transportadoras de Cobre/genética , Cobre/metabolismo , Células Germinativas/metabolismo , Homeostase , Animais , Western Blotting , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transportador de Cobre 1 , ATPases Transportadoras de Cobre/metabolismo , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células de Sertoli/metabolismo , Espermatogênese/genética , Testículo/citologia , Testículo/metabolismo
14.
PLoS One ; 12(7): e0181117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704474

RESUMO

Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.


Assuntos
Anemia Ferropriva/dietoterapia , Duodeno/metabolismo , Perfilação da Expressão Gênica/métodos , Heme Oxigenase-1/genética , Heme/administração & dosagem , Administração Oral , Anemia Ferropriva/genética , Anemia Ferropriva/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Heme/uso terapêutico , Heme Oxigenase-1/química , Humanos , Suínos
15.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1410-1421, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28219768

RESUMO

Mosaic mutant mice displaying functional dysfunction of Atp7a copper transporter (the Menkes ATPase) are an established animal model of Menkes disease and constitute a convenient tool for investigating connections between copper and iron metabolisms. This model allows to explore changes in iron metabolism in suckling mutant mice suffering from systemic copper deficiency as well as in young and adult ones undergone copper therapy, which reduces lethal effect of the Atp7a gene mutation. Our recent study demonstrated that 14-day-old mosaic mutant males display blood cell abnormalities associated with intravascular hemolysis, and show disturbances in the functioning of the hepcidin-ferroportin regulatory axis, which controls systemic iron homeostasis. We thus aimed to check whether copper supplementation recovers mutants from hemolytic insult and rebalance systemic iron regulation. Copper supplementation of 14-day-old mosaic mutants resulted in the reestablishment of hematological status, attenuation of hepicidin and concomitant induction of the iron exporter ferroportin/Slc40a1 expression in the liver, down-regulated in untreated mutants. Interestingly, treatment of wild-type males with copper, induced hepcidin-independent up-regulation of ferroportin protein level in hepatic macrophages in both young and adult (6-month-old) animals. Stimulatory effect of copper on ferroportin mRNA and protein levels was confirmed in bone marrow-derived macrophages isolated from both wild-type and mosaic mutant males. Our study indicates that copper is an important player in the regulation of the Slc40a1 gene expression.


Assuntos
Proteínas de Transporte de Cátions/biossíntese , Cobre/farmacologia , Regulação da Expressão Gênica , Hemólise , Mosaicismo , Animais , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hemólise/efeitos dos fármacos , Hemólise/genética , Masculino , Camundongos , Camundongos Knockout
16.
Sci Total Environ ; 571: 658-69, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27405520

RESUMO

Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a ß-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed and winter rapeseed growing as a volunteer plant.


Assuntos
Microbiologia do Ar , Ascomicetos/isolamento & purificação , Brassica napus/microbiologia , Monitoramento Ambiental/métodos , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ascomicetos/genética , DNA Fúngico/análise , Modelos Teóricos , Polônia , Especificidade da Espécie , Esporos Fúngicos/isolamento & purificação
17.
PLoS One ; 10(8): e0136695, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26323096

RESUMO

Among livestock, domestic pig (Sus scrofa) is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS) are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.


Assuntos
Anemia Ferropriva/veterinária , Hepcidinas/urina , Ferro/metabolismo , Sus scrofa/urina , Doenças dos Suínos/urina , Anemia Ferropriva/sangue , Anemia Ferropriva/urina , Animais , Cromatografia por Troca Iônica , Suplementos Nutricionais , Hepcidinas/sangue , Hepcidinas/genética , Ferro/administração & dosagem , Ferro/sangue , Fígado/metabolismo , Espectrometria de Massas , RNA Mensageiro/sangue , RNA Mensageiro/genética , Sus scrofa/sangue , Sus scrofa/metabolismo , Suínos , Doenças dos Suínos/sangue
18.
Front Mol Neurosci ; 8: 82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26778957

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS) and associated with mutations, frequently in the superoxide dismutase 1 (SOD1) gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS - transgenic mice overexpressing human mutated SOD1(G93A) gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month-old and symptomatic, 4-month-old SOD1(G93A) mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1(G93A) genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

19.
PLoS One ; 9(9): e107641, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247420

RESUMO

The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Hemólise , Ferro/metabolismo , Síndrome dos Cabelos Torcidos/patologia , Animais , Linhagem Celular , ATPases Transportadoras de Cobre , Modelos Animais de Doenças , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/sangue , Síndrome dos Cabelos Torcidos/genética , Camundongos , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA