Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328050

RESUMO

The brain's neuroreparative capacity after injuries such as ischemic stroke is contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here we report a mouse genetic tool (the ROSA26iDTR mouse line) for non-invasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at one-month post-ablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the MCAo model of ischemic stroke, neuroblast migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important and novel role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.

2.
Cell Rep ; 43(1): 113660, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38217856

RESUMO

The recent proliferation of new Cre and CreER recombinase lines provides researchers with a diverse toolkit to study microglial gene function. To determine how best to apply these lines in studies of microglial gene function, a thorough and detailed comparison of their properties is needed. Here, we examined four different microglial CreER lines (Cx3cr1YFP-CreER(Litt), Cx3cr1CreER(Jung), P2ry12CreER, and Tmem119CreER), focusing on (1) recombination specificity, (2) leakiness (the degree of tamoxifen-independent recombination in microglia and other cells), (3) the efficiency of tamoxifen-induced recombination, (4) extraneural recombination (the degree of recombination in cells outside of the CNS, particularly myelo/monocyte lineages), and (5) off-target effects in the context of neonatal brain development. We identify important caveats and strengths for these lines, which will provide broad significance for researchers interested in performing conditional gene deletion in microglia. We also provide data emphasizing the potential of these lines for injury models that result in the recruitment of splenic immune cells.


Assuntos
Integrases , Microglia , Camundongos , Animais , Camundongos Transgênicos , Tamoxifeno/farmacologia , Modelos Animais de Doenças
3.
Glia ; 71(10): 2473-2494, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37401784

RESUMO

Nogo-A, B, and C are well described members of the reticulon family of proteins, most well known for their negative regulatory effects on central nervous system (CNS) neurite outgrowth and repair following injury. Recent research indicates a relationship between Nogo-proteins and inflammation. Microglia, the brain's immune cells and inflammation-competent compartment, express Nogo protein, although specific roles of the Nogo in these cells is understudied. To examine inflammation-related effects of Nogo, we generated a microglial-specific inducible Nogo KO (MinoKO) mouse and challenged the mouse with a controlled cortical impact (CCI) traumatic brain injury (TBI). Histological analysis shows no difference in brain lesion sizes between MinoKO-CCI and Control-CCI mice, although MinoKO-CCI mice do not exhibit the levels of ipsilateral lateral ventricle enlargement as injury matched controls. Microglial Nogo-KO results in decreased lateral ventricle enlargement, microglial and astrocyte immunoreactivity, and increased microglial morphological complexity compared to injury matched controls, suggesting decreased tissue inflammation. Behaviorally, healthy MinoKO mice do not differ from control mice, but automated tracking of movement around the home cage and stereotypic behavior, such as grooming and eating (termed cage "activation"), following CCI is significantly elevated. Asymmetrical motor function, a deficit typical of unilaterally brain lesioned rodents, was not detected in CCI injured MinoKO mice, while the phenomenon was present in CCI injured controls 1-week post-injury. Overall, our studies show microglial Nogo as a negative regulator of recovery following brain injury. To date, this is the first evaluation of the roles microglial specific Nogo in a rodent injury model.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Proteínas Nogo , Animais , Camundongos , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteínas Nogo/metabolismo
4.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461569

RESUMO

While TGF-ß signaling is essential for microglial function, the cellular source of TGF-ß ligand and its spatial regulation remains unclear in the adult CNS. Our data support that microglia, not astrocytes or neurons, are the primary producers of TGF-ß1 ligands needed for microglial homeostasis. Microglia (MG)-Tgfb1 inducible knockout (iKO) leads to the activation of microglia featuring a dyshomeostatic transcriptomic profile that resembles disease-associated microglia (DAMs), injury-associated microglia, and aged microglia, suggesting that microglial self-produced TGF-ß1 ligands are important in the adult CNS. Interestingly, astrocytes in MG-Tgfb1 iKO mice show a transcriptome profile that closely aligns with A1-like astrocytes. Additionally, using sparse mosaic single-cell microglia iKO of TGF-ß1 ligand, we established an autocrine mechanism for TGF-ß signaling. Importantly MG-Tgfb1 iKO mice show cognitive deficits, supporting that precise spatial regulation of TGF-ß1 ligand derived from microglia is critical for the maintenance of brain homeostasis and normal cognitive function in the adult brain.

5.
bioRxiv ; 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131606

RESUMO

The recent proliferation of new Cre and CreER recombinase lines provides researchers with a diverse toolkit to study microglial gene function. To determine how best to apply these lines in studies of microglial gene function, a thorough and detailed comparison of their properties is needed. Here, we examined four different microglial CreER lines (Cx3cr1CreER(Litt), Cx3cr1CreER(Jung), P2ry12CreER, Tmem119CreER), focusing on (1) recombination specificity; (2) leakiness - degree of non-tamoxifen recombination in microglia and other cells; (3) efficiency of tamoxifen-induced recombination; (4) extra-neural recombination -the degree of recombination in cells outside the CNS, particularly myelo/monocyte lineages (5) off-target effects in the context of neonatal brain development. We identify important caveats and strengths for these lines which will provide broad significance for researchers interested in performing conditional gene deletion in microglia. We also provide data emphasizing the potential of these lines for injury models that result in the recruitment of splenic immune cells.

7.
Cell Rep ; 40(4): 111137, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35905716

RESUMO

In addition to neuroprotective strategies, neuroregenerative processes could provide targets for stroke recovery. However, the upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) impedes innate regenerative efforts. Here, we examine the regulatory role of PTPσ (a major proteoglycan receptor) in dampening post-stroke recovery. Use of a receptor modulatory peptide (ISP) or Ptprs gene deletion leads to increased neurite outgrowth and enhanced NSCs migration upon inhibitory CSPG substrates. Post-stroke ISP treatment results in increased axonal sprouting as well as neuroblast migration deeply into the lesion scar with a transcriptional signature reflective of repair. Lastly, peptide treatment post-stroke (initiated acutely or more chronically at 7 days) results in improved behavioral recovery in both motor and cognitive functions. Therefore, we propose that CSPGs induced by stroke play a predominant role in the regulation of neural repair and that blocking CSPG signaling pathways will lead to enhanced neurorepair and functional recovery in stroke.


Assuntos
Células-Tronco Neurais , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/metabolismo , Peptídeos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
8.
Transl Stroke Res ; 13(5): 830-844, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35146631

RESUMO

Sonic Hedgehog (SHH) signaling has a critical role in mediating developmental neurogenesis and has been implicated in adult subventricular (SVZ) neurogenesis. However, the precise role of Smoothened (SMO) receptor-mediated SHH signaling in adult neurogenesis during aging especially in hippocampal subgranular zone (SGZ) neurogenesis remains undefined. Additionally, our previous study showed that stimulation of SHH signaling post-stroke leads to increased neurogenesis and improved behavioral functions after stroke. However, it is not clear whether SHH signaling in neural stem cells (NSCs) is required for stroke-induced neurogenesis and functional recovery post-stroke. In this study, using conditional knockout (cKO) of SHH signaling receptor Smo gene in NSCs, we show a decreased neurogenesis at both SVZ and SGZ in young-adult mice and an accelerated depletion of neurogenic cells in the process of aging suggesting that SHH signaling is critical in maintaining neurogenesis during aging. Behavior studies revealed that compromised neurogenesis in Smo cKO mice leads to increased anxiety/depression-like behaviors without affecting general locomotor function or spatial and fear-related learning. Importantly, we also show that NSCs with a cKO of SHH signaling abolishes stroke-induced neurogenesis in Smo cKO mice. Compared to control mice, Smo cKO mice also show delayed motor function recovery and increased anxiety level after stroke. Our data highlights the essential role of Smo function in regulating adult neurogenesis and emotional behaviors during both aging and CNS injury such as stroke.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Animais , Ansiedade/etiologia , Proteínas Hedgehog/genética , Camundongos , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/complicações
9.
J Neuroinflammation ; 19(1): 3, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983562

RESUMO

BACKGROUND: Two recently developed novel rodent models have been reported to ablate microglia, either by genetically targeting microglia (via Cx3cr1-creER: iDTR + Dtx) or through pharmacologically targeting the CSF1R receptor with its inhibitor (PLX5622). Both models have been widely used in recent years to define essential functions of microglia and have led to high impact studies that have moved the field forward. METHODS: Using either Cx3cr1-iDTR mice in combination with Dtx or via the PLX5622 diet to pharmacologically ablate microglia, we compared the two models via MRI and histology to study the general anatomy of the brain and the CSF/ventricular systems. Additionally, we analyzed the cytokine profile in both microglia ablation models. RESULTS: We discovered that the genetic ablation (Cx3cr1-iDTR + Dtx), but not the pharmacological microglia ablation (PLX5622), displays a surprisingly rapid pathological condition in the brain represented by loss of CSF/ventricles without brain parenchymal swelling. This phenotype was observed both in MRI and histological analysis. To our surprise, we discovered that the iDTR allele alone leads to the loss of CSF/ventricles phenotype following diphtheria toxin (Dtx) treatment independent of cre expression. To examine the underlying mechanism for the loss of CSF in the Cx3cr1-iDTR ablation and iDTR models, we additionally investigated the cytokine profile in the Cx3cr1-iDTR + Dtx, iDTR + Dtx and the PLX models. We found increases of multiple cytokines in the Cx3cr1-iDTR + Dtx but not in the pharmacological ablation model nor the iDTR + Dtx mouse brains at the time of CSF loss (3 days after the first Dtx injection). This result suggests that the upregulation of cytokines is not the cause of the loss of CSF, which is supported by our data indicating that brain parenchyma swelling, or edema are not observed in the Cx3cr1-iDTR + Dtx microglia ablation model. Additionally, pharmacological inhibition of the KC/CXCR2 pathway (the most upregulated cytokine in the Cx3cr1-iDTR + Dtx model) did not resolve the CSF/ventricular loss phenotype in the genetic microglia ablation model. Instead, both the Cx3cr1-iDTR + Dtx ablation and iDTR + Dtx models showed increased activated IBA1 + cells in the choroid plexus (CP), suggesting that CP-related pathology might be the contributing factor for the observed CSF/ventricular shrinkage phenotype. CONCLUSIONS: Our data, for the first time, reveal a robust and global CSF/ventricular space shrinkage pathology in the Cx3cr1-iDTR genetic ablation model caused by iDTR allele, but not in the PLX5622 ablation model, and suggest that this pathology is not due to brain edema formation but to CP related pathology. Given the wide utilization of the iDTR allele and the Cx3cr1-iDTR model, it is crucial to fully characterize this pathology to understand the underlying causal mechanisms. Specifically, caution is needed when utilizing this model to interpret subtle neurologic functional changes that are thought to be mediated by microglia but could, instead, be due to CSF/ventricular loss in the genetic ablation model.


Assuntos
Encéfalo/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo , Toxina Diftérica/metabolismo , Microglia/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Cells ; 10(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922788

RESUMO

Traumatic brain injury (TBI) results in a number of impairments, often including visual symptoms. In some cases, visual impairments after head trauma are mediated by traumatic injury to the optic nerve, termed traumatic optic neuropathy (TON), which has few effective options for treatment. Using a murine closed-head weight-drop model of head trauma, we previously reported in adult mice that there is relatively selective injury to the optic tract and thalamic/brainstem projections of the visual system. In the current study, we performed blunt head trauma on adolescent C57BL/6 mice and investigated visual impairment in the primary visual system, now including the retina and using behavioral and histologic methods at new time points. After injury, mice displayed evidence of decreased optomotor responses illustrated by decreased optokinetic nystagmus. There did not appear to be a significant change in circadian locomotor behavior patterns, although there was an overall decrease in locomotor behavior in mice with head injury. There was evidence of axonal degeneration of optic nerve fibers with associated retinal ganglion cell death. There was also evidence of astrogliosis and microgliosis in major central targets of optic nerve projections. Further, there was elevated expression of endoplasmic reticulum (ER) stress markers in retinas of injured mice. Visual impairment, histologic markers of gliosis and neurodegeneration, and elevated ER stress marker expression persisted for at least 30 days after injury. The current results extend our previous findings in adult mice into adolescent mice, provide direct evidence of retinal ganglion cell injury after head trauma and suggest that axonal degeneration is associated with elevated ER stress in this model of TON.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Estresse do Retículo Endoplasmático , Gliose/patologia , Doenças Neurodegenerativas/patologia , Traumatismos do Nervo Óptico/complicações , Transtornos da Visão/patologia , Animais , Modelos Animais de Doenças , Gliose/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/etiologia , Transtornos da Visão/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA