Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(5): 1887-1898, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38984686

RESUMO

The role of maternal tissue in embryogenesis remains enigmatic in many complex organisms. Here, we investigate the contribution of maternal tissue to apical-basal patterning in the kelp embryo. Focussing on Undaria pinnatifida, we studied the effects of detachment from the maternal tissue using microsurgery, staining of cell wall modifications, morphometric measurements, flow cytometry, genotyping and a modified kelp fertilisation protocol synchronising kelp embryogenesis. Detached embryos are rounder and often show aberrant morphologies. When a part of the oogonial cell wall remains attached to the zygote, the apical-basal patterning is rescued. Furthermore, the absence of contact with maternal tissue increases parthenogenesis, highlighting the critical role of maternal signals in the initial stages of development. These results show a key role for the connection to the maternal oogonial cell wall in apical-basal patterning in kelps. This observation is reminiscent of another brown alga, Fucus, where the cell wall directs the cell fate. Our findings suggest a conserved mechanism across phylogenetically distant oogamous lineages, where localised secretion of sulphated F2 fucans mediates the establishment of the apical-basal polarity. In this model, the maternal oogonial cell wall mediates basal cell fate determination by providing an extrinsic patterning cue to the future kelp embryo.


Assuntos
Parede Celular , Undaria , Undaria/fisiologia , Parede Celular/metabolismo , Padronização Corporal , Kelp/fisiologia , Partenogênese , Algas Comestíveis
2.
Int J Biol Macromol ; 269(Pt 2): 131918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697418

RESUMO

Polygalacturonases (PGs) can modulate chemistry and mechanical properties of the plant cell wall through the degradation of pectins, one of its major constituents. PGs are largely used in food, beverage, textile, and paper industries to increase processes' performances. To improve the use of PGs, knowledge of their biochemical, structural and functional features is of prime importance. Our study aims at characterizing SmoPG1, a polygalacturonase from Selaginella moellendorffii, that belongs to the lycophytes. Transcription data showed that SmoPG1 was mainly expressed in S. moellendorffii shoots while phylogenetic analyses suggested that SmoPG1 is an exo-PG, which was confirmed by the biochemical characterization following its expression in heterologous system. Indeed, LC-MS/MS oligoprofiling using various pectic substrates identified galacturonic acid (GalA) as the main hydrolysis product. We found that SmoPG1 was most active on polygalacturonic acid (PGA) at pH 5, and that its activity could be modulated by different cations (Ca2+, Cu2+, Fe2+, Mg2+, Mn2+, Na2+, Zn2+). In addition, SmoPG1 was inhibited by green tea catechins, including (-)-epigallocatechin-3-gallate (EGCG). Docking analyses and MD simulations showed in detail amino acids responsible for the SmoPG1-EGCG interaction. Considering its expression yield and activity, SmoPG1 appears as a prime candidate for the industrial production of GalA.


Assuntos
Pectinas , Poligalacturonase , Selaginellaceae , Poligalacturonase/metabolismo , Poligalacturonase/química , Poligalacturonase/genética , Selaginellaceae/química , Selaginellaceae/genética , Selaginellaceae/enzimologia , Pectinas/metabolismo , Pectinas/química , Filogenia , Especificidade por Substrato , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Hidrólise , Ácidos Hexurônicos
3.
Nat Commun ; 15(1): 2061, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448433

RESUMO

Plants are capable of altering root growth direction to curtail exposure to a saline environment (termed halotropism). The root cap that surrounds root tip meristematic stem cells plays crucial roles in perceiving and responding to environmental stimuli. However, how the root cap mediates root halotropism remains undetermined. Here, we identified a root cap-localized NAC transcription factor, SOMBRERO (SMB), that is required for root halotropism. Its effect on root halotropism is attributable to the establishment of asymmetric auxin distribution in the lateral root cap (LRC) rather than to the alteration of cellular sodium equilibrium or amyloplast statoliths. Furthermore, SMB is essential for basal expression of the auxin influx carrier gene AUX1 in LRC and for auxin redistribution in a spatiotemporally-regulated manner, thereby leading to directional bending of roots away from higher salinity. Our findings uncover an SMB-AUX1-auxin module linking the role of the root cap to the activation of root halotropism.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Arabidopsis/genética , Regulação da Expressão Gênica , Estresse Salino/genética , Ácidos Indolacéticos
4.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190549

RESUMO

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Assuntos
Arabidopsis , Hidrolases de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Mutação/genética , Pectinas/metabolismo , Concentração de Íons de Hidrogênio
5.
Front Plant Sci ; 14: 1283047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259951

RESUMO

Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2 -) and then to nitrate (NO3 -). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3 - leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA