Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(40): 27499-27516, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39350717

RESUMO

The development of next generation soft and recyclable materials prominently features dynamic (reversible) chemistries such as host-guest, supramolecular, and dynamic covalent. Dynamic systems enable injectability, reprocessability, and time-dependent mechanical properties. These properties arise from the inherent relationship between the rate and equilibrium constants (RECs) of molecular junctions (cross-links) and the resulting macroscopic behavior of dynamic networks. However, few examples explicitly measure RECs while exploring this connection between molecular and material properties, particularly for polymeric hydrogel systems. Here we use dynamic covalent imine formation to study how single-point compositional changes in NH2-terminated nucleophiles affect binding constants and resulting hydrogel mechanical properties. We explored both model small molecule studies and model polymeric macromers, and found >3-decade change in RECs. Leveraging established relationships in the literature, we then developed a simple model to describe the cross-linking equilibrium and predict changes in hydrogel mechanical properties. Interestingly, we observed that a narrow ≈2-decade range of Keq's determine the bound fraction of imines. Our model allowed us to uncover a regime where adding cross-linker before saturation can decrease the cross-link density of a hydrogel. We then demonstrated the veracity of this predicted behavior experimentally. Notably this emergent behavior is not accounted for in covalent hydrogel theory. This study expands upon structure-reactivity relationships for imine formation, highlighting how quantitative determination of RECs facilitates predicting macroscopic behavior. Furthermore, while the present study focuses on dynamic covalent imine formation, the underlying principles of this work are applicable to the general bottom-up design of soft and recyclable dynamic materials.

2.
J Am Chem Soc ; 146(35): 24330-24347, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39163519

RESUMO

Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.


Assuntos
Aldeídos , Materiais Biocompatíveis , Hidrogéis , Polímeros , Hidrogéis/química , Hidrogéis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Ligantes , Aldeídos/química , Polímeros/química , Polímeros/síntese química , Humanos
3.
Adv Mater ; 36(34): e2310258, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38226666

RESUMO

The regeneration of the osteochondral unit represents a challenge due to the distinct cartilage and bone phases. Current strategies focus on the development of multiphasic scaffolds that recapitulate features of this complex unit and promote the differentiation of implanted bone-marrow derived stem cells (BMSCs). In doing so, challenges remain from the loss of stemness during in vitro expansion of the cells and the low control over stem cell activity at the interface with scaffolds in vitro and in vivo. Here, this work scaffolds inspired by the bone marrow niche that can recapitulate the natural healing process after injury. The construct comprises an internal depot of quiescent BMSCs, mimicking the bone marrow cavity, and an electrospun (ESP) capsule that "activates" the cells to migrate into an outer "differentiation-inducing" 3D printed unit functionalized with TGF-ß and BMP-2 peptides. In vitro, niche-inspired scaffolds retained a depot of nonproliferative cells capable of migrating and proliferating through the ESP capsule. Invasion of the 3D printed cavity results in location-specific cell differentiation, mineralization, secretion of alkaline phosphatase (ALP) and glycosaminoglycans (GAGs), and genetic upregulation of collagen II and collagen I. In vivo, niche-inspired scaffolds are biocompatible, promoted tissue formation in rat subcutaneous models, and regeneration of the osteochondral unit in rabbit models.


Assuntos
Diferenciação Celular , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Ratos , Engenharia Tecidual/métodos , Proteína Morfogenética Óssea 2/metabolismo , Regeneração , Células-Tronco Mesenquimais/citologia , Osteogênese , Fator de Crescimento Transformador beta/metabolismo , Regeneração Óssea , Humanos , Condrogênese , Coelhos
4.
Biofabrication ; 15(1)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395500

RESUMO

Melt extrusion-based additive manufacturing (AM) is often used to fabricate scaffolds for osteochondral (OC) regeneration. However, there are two shortcomings associated with this scaffold manufacturing technique for engineering of tissue interfaces: (a) most polymers used in the processing are bioinert, and (b) AM scaffolds often contain discrete (material) gradients accompanied with mechanically weak interfaces. The inability to mimic the gradual transition from cartilage to bone in OC tissue leads to poor scaffold performance and even failure. We hypothesized that introducing peptide gradients on the surface could gradually guide human mesenchymal stromal cell (hMSC) differentiation, from a chondrogenic towards on osteogenic phenotype. To work towards this goal, we initially manufactured poly(ϵ-caprolactone)-azide (PCLA) and PCL-maleimide (PCLM) scaffolds. The surface exposed click-type functional groups, with a surface concentration in the 102pmol cm-2regime, were used to introduce bone morphogenic protein-2 or transforming growth factor-beta binding peptide sequences to drive hMSC differentiation towards osteogenic or chondrogenic phenotypes, respectively. After 3 weeks of culture in chondrogenic medium, we observed differentiation towards hypertrophic chondrogenic phenotypes with expression of characteristic markers such as collagen X. In osteogenic medium, we observed the upregulation of mineralization markers. In basic media, the chondro-peptide displayed a minor effect on chondrogenesis, whereas the osteo-peptide did not affect osteogenesis. In a subcutaneous rat model, we observed a minimal foreign body response to the constructs, indicating biocompatibility. As proof-of-concept, we finally used a novel AM technology to showcase its potential to create continuous polymer gradients (PCLA and PCLM) across scaffolds. These scaffolds did not display delamination and were mechanically stronger compared to discrete gradient scaffolds. Due to the versatility of the orthogonal chemistry applied, this approach provides a general strategy for the field; we could anchor other tissue specific cues on the clickable groups, making these gradient scaffolds interesting for multiple interfacial tissue applications.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Humanos , Ratos , Animais , Condrogênese , Osteogênese , Cartilagem/metabolismo , Diferenciação Celular , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA