Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 28(38): 385201, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28699922

RESUMO

Using out-of-plane magnetized layers, a lateral shift register made from discrete elements is demonstrated. By carefully designing the in-plane shape of the elements which make up the shift register, both the position of nucleation of new domains and the coercivity of the element can be controlled. The dipole field from a neighboring element, placed tens of nanometers away, creates a bias field on the nucleation site, which can be used to create a NOT gate. By chaining these NOT gates together, a shift register can be created where data bits consisting of neighboring layers with aligned magnetization are propagated synchronously under a symmetric applied magnetic field. The operation of a 16 element shift register is shown, including field coupled data injection.

2.
Philos Trans A Math Phys Eng Sci ; 370(1981): 5794-805, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23166381

RESUMO

The interaction of two domain walls (DWs) at a cross-shaped vertex fabricated from two ferromagnetic nanowires has been experimentally investigated. Both magnetostatically repulsive and attractive interactions have been probed. It is found that in the repulsive case, a passing DW may directly induce the depinning of another that is already pinned at a vertex. This effect can be qualitatively described by considering only simple, magnetostatic-charge-based arguments. In the attractive case, however, asymmetric pinning is found, with complete suppression of depinning possible. This observed effect is contrary to simple charge-based arguments and highlights the need for full micromagnetic characterization of the DW interactions in more complex systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA