Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
MethodsX ; 9: 101931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451781

RESUMO

We propose a methodology for calculating the distribution of the mechanical properties in model atomistic polymer-based nanostructured systems. The use of atomistic simulations is key in unravelling the fundamental mechanical behavior of composite materials. Most simulations involving the mechanical properties of polymer nanocomposites (PNCs) concern their global (average) properties, which are typically extracted by applying macroscopic strain on the boundaries of the simulation box and calculating the total (global) stress by invoking the Virial formalism over all atoms within the simulation box; thus, extracting the pertinent mechanical properties from the corresponding stress-strain relation. However, in order to probe the distribution of mechanical properties within heterogeneous multi-component polymer-based systems, a detailed computation of stress and strain fields within specific sub-domains is necessary. For example, it is well known for multi-component nanostructured systems, such as PNCs, that the mechanical behavior of the polymer/nanofiller interphases, or interfaces, is crucial for determining the global mechanical properties of the composite materials. Here we propose a new methodology to probe the distribution of mechanical properties by directly computing the (local) stress and strain at the atomic level, and averaging over user-defined subdomains. The workflow of our computational method possesses the following features:•Calculating the stress and strain per atom (or per particle) for nanostructured microscopic (here atomistic) model configurations, under an imposed applied deformation.•Averaging the local, per-atom defined, stress and strain on user-defined subdomains within the nanostructured model system.•Predicting the mechanical properties within the specific subdomains, focusing on polymer/solid interphases.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443909

RESUMO

The dynamics of polymer chains in the polymer/solid interphase region have been a point of debate in recent years. Its understanding is the first step towards the description and the prediction of the properties of a wide family of commercially used polymeric-based nanostructured materials. Here, we present a detailed investigation of the conformational and dynamical features of unentangled and mildly entangled cis-1,4-polybutadiene melts in the vicinity of amorphous silica surface via atomistic simulations. Accounting for the roughness of the surface, we analyze the properties of the polymer chains as a function of their distance from the silica slab, their conformations and the chain molecular weight. Unlike the case of perfectly flat and homogeneous surfaces, the monomeric translational motion parallel to the surface was affected by the presence of the silica slab up to distances comparable with the extension of the density fluctuations. In addition, the intramolecular dynamical heterogeneities in adsorbed chains were revealed by linking the conformations and the structure of the adsorbed chains with their dynamical properties. Strong dynamical heterogeneities within the adsorbed layer are found, with the chains possessing longer sequences of adsorbed segments ("trains") exhibiting slower dynamics than the adsorbed chains with short ones. Our results suggest that, apart from the density-dynamics correlation, the configurational entropy plays an important role in the dynamical response of the polymers confined between the silica slabs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA