Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236056

RESUMO

This investigation deals with the prediction of mechanical behavior in basalt-fiber-reinforced concrete using the finite element method (FEM). The use of fibers as reinforcement in concrete is a relatively new concept which results in several advantages over steel-reinforced concrete with respect to mechanical performance. Glass and polypropylene (PP) fibers have been extensively used for reinforcing concrete for decades, but basalt fibers have gained popularity in recent years due to their superior mechanical properties and compatibility with concrete. In this study, the mechanical properties of basalt-fiber-reinforced concrete are predicted using FEM analysis, and the model results are validated by conducting experiments. The effect of fiber-volume fraction on the selected mechanical performance of concrete is evaluated in detail. Significant improvement is observed when the loading is increased. There are superior mechanical properties, e.g., load bearing and strain energy in basalt-fiber-reinforced concrete as compared to conventional concrete slabs reinforced with gravel or stones. The results of the simulations are correlated with experimental samples and show a very high similarity. Basalt-fiber-reinforced concrete (BFRC) offers a lightweight construction material as compared to steel-fiber-reinforced concrete (SFRC). Further, the problem of corrosion is overcome by using this novel fiber material in concrete composites.

2.
Polymers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335464

RESUMO

This work presents the manufacture of polymer composites using 3D woven structures (orthogonal, angle interlock and warp interlock) with glass multifilament tows and epoxy as the resin. The mechanical properties were analyzed by varying the processing parameters, namely, add-on percentage, amount of hardener, curing time, curing temperature and molding pressure, at four different levels during the composite fabrication for three different 3D woven structures. The mechanical properties of composites are affected by resin infusion or resin impregnation. Resin infusion depends on many processing conditions (temperature, pressure, viscosity and molding time), the structure of the reinforcement and the compatibility of the resin with the reinforcement. The samples were tested for tensile strength, tensile modulus, impact resistance and flexural strength. Optimal process parameters were identified for different 3D-woven-structure-based composites for obtaining optimal results for tensile strength, tensile modulus, impact resistance and flexural strength. The tensile strength, elongation at break and tensile modulus were found to be at a maximum for the angle interlock structure among the various 3D woven composites. A composition of 55% matrix (including 12% of hardener added) and 45% fiber were found to be optimal for the tensile and impact performance of 3D woven glass-epoxy composites. A curing temperature of about 140 °C seemed to be optimal for glass-epoxy composites. Increasing the molding pressure up to 12 bar helped with better penetration of the resin, resulting in higher tensile strength, modulus and impact performance. The optimal conditions for the best flexural performance in 3D woven glass-epoxy composites were 12% hardener, 140 °C curing temperature, 900 s curing time and 12 bar molding pressure.

3.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947137

RESUMO

The article focuses on the machining of polymeric materials polypropylene (PP) and un-plasticized poly vinyl chloride (PVC-U) after surface treatment with polyurethane and acrylate coatings using waterjet technology. Two types of waterjet technologies, abrasive waterjet (AWJ) and waterjet without abrasive (WJ), were used. The kerf width and its taper angle, at the inlet and outlet of the waterjet from the workpiece, were evaluated. Significant differences between AWJ and WJ technology were found. WJ technology proved to be less effective due to the creation of a nonuniform cutting gap and significant burrs. AWJ technology was shown to be more efficient, i.e., more uniform cuts were achieved compared to WJ technology, especially at a cutting head traverse speed of 50 mm·min-1. The most uniform kerf width or taper angle was achieved for PP + MOBIHEL (0.09°). The materials (PP and PVC-U) with the POLURAN coating had higher values of the taper angle of the cutting gap than the material with the MOBIHEL coating at all cutting head traverse speeds. The SEM results showed that the inappropriate cutting head traverse speed and the associated WJ technology resulted in significant destruction of the material to be cut on the underside of the cut. Delamination of the POLURAN and MOBIHEL coatings from the base material PP and PVC-U was not demonstrated by SEM analysis over the range of cutting head traverse speeds, i.e., 50 to 1000 mm·min-1.

4.
Polymers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685295

RESUMO

The research is focused on the design and development of woven textile-based structural hollow composites. E-Glass and high tenacity polyester multifilament yarns were used to produce various woven constructions. Yarn produced from cotton shoddy (fibers extracted from waste textiles) was used to develop hybrid preforms. In this study, unidirectional (UD), two-dimensional (2D), and three-dimensional (3D) fabric preforms were designed and developed. Further, 3D woven spacer fabric preforms with single-layer woven cross-links having four different geometrical shapes were produced. The performance of the woven cross-linked spacer structure was compared with the sandwich structure connected with the core pile yarns (SPY). Furthermore, three different types of cotton shoddy yarn-based fabric structures were developed. The first is unidirectional (UD), the second is 2D all-waste cotton fabric, and the third is a 2D hybrid fabric with waste cotton yarn in the warp and glass multifilament yarn in the weft. The UD, 2D, and 3D woven fabric-reinforced composites were produced using the vacuum-assisted resin infusion technique. The spacer woven structures were converted to composites by inserting wooden blocks with an appropriate size and wrapped with a Teflon sheet into the hollow space before resin application. A vacuum-assisted resin infusion technique was used to produce spacer woven composites. While changing the reinforcement from chopped fibers to 3D fabric, its modulus and ductility increase substantially. It was established that the number of crossover points in the weave structures offered excellent association with the impact energy absorption and formability behavior, which are important for many applications including automobiles, wind energy, marine and aerospace. Mechanical characterization of honeycomb composites with different cell sizes, opening angles and wall lengths revealed that the specific compression energy is higher for regular honeycomb structures with smaller cell sizes and a higher number of layers, keeping constant thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA