Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(3): 288-295, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38368530

RESUMO

We report a facile stimuli-responsive strategy to generate reactive oxygen and nitrogen species (ROS and RNS) in the biological milieu from a photocleavable water-soluble block copolymer under visible light irradiation (427 nm, 2.25 mW/cm2). An anthraquinone-based water-soluble polymeric nitric oxide (NO) donor (BCPx-NO) is synthesized, which exhibits NO release in the range of 40-65 µM within 10 h of photoirradiation with a half-life of 30-103 min. Additionally, BCPx-NO produces peroxynitrite (ONOO-) and singlet oxygen (1O2) under photoirradiation. To understand the mechanism of NO release and photolysis of the functional group under blue light, we prepared a small-molecule anthraquinone-based N-nitrosamine (NOD). The cellular investigation of the effect of spatiotemporally controlled ONOO- and 1O2 generation from the NO donor polymeric nanoparticles in a triple negative breast adenocarcinoma (MDA-MB-231) under visible light irradiation (white light, 5.83 mW/cm2; total dose 31.5 J/cm2) showed an IC50 of 0.6 mg/mL. The stimuli-responsive strategy using a photolabile water-soluble block copolymer employed to generate ROS and RNS in a biological setting widens the horizon for their potential in cancer therapy.


Assuntos
Neoplasias , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/uso terapêutico , Espécies Reativas de Oxigênio/uso terapêutico , Polímeros/uso terapêutico , Espécies Reativas de Nitrogênio/uso terapêutico , Luz , Oxigênio/uso terapêutico , Óxido Nítrico/uso terapêutico , Antraquinonas/uso terapêutico , Neoplasias/tratamento farmacológico
2.
Sci Technol Adv Mater ; 23(1): 49-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185388

RESUMO

Formaldehyde is a well-known industrial material regularly used in fishery, vegetable markets, and fruit shops for maintaining their freshness. But due to its carcinogenic nature and other toxic effects, it is very important to detect it in very low concentrations. In recent years, amine-containing fluorescent probes have gained significant attention for designing formaldehyde sensors. However, the major drawbacks of these small molecular probes are low sensitivity and long exposure time, which limits their real-life applications. In this regard, polymeric probes have gained significant attention to overcome the aforementioned problems. Several polymeric probes have been utilized as a coating material, nanoparticle, quartz crystal microbalance (QCM), etc., for the selective and sensitive detection of formaldehyde. The main objective of this review article is to comprehensively describe the recent advancements in formaldehyde sensors based on small molecules and polymers, and their successful applications in various fields, especially in situ formaldehyde sensing in biological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA