Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 34: 102031, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37771911

RESUMO

Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/ß-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/ß-catenin signaling axis.

2.
Toxicol In Vitro ; 79: 105293, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34883246

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis and remains highly aggressive despite current advancements in therapies. Chemoresistance and high metastatic nature of PDAC is attributed to a small subset of stem-like cells within the tumor known as Cancer Stem Cells (CSCs). Here, we developed a strategy for targeting pancreatic CSCs through forceful induction of mesenchymal-to-epithelial transition driven by encapsulating a phytochemical Nimbolide in nanoparticles. Binding of Nimbolide with the key regulator proteins of CSCs were studied through molecular docking and molecular dynamic simulation studies, which revealed that it binds to AKT and mTOR with high affinity. Further, in vitro studies revealed that Nim NPs are capable of inducing forceful mesenchymal-to-epithelial transition of pancreatospheres that leads to loss of multidrug resistance and self-renewal properties of pancreatospheres. Our study gives a proof of concept that encapsulation of Nim in PLGA nanoparticles increases its therapeutic effect on pancreatospheres. Further, binding of Nim to AKT and mTOR negatively regulates their activity that ultimately leads to mesenchymal-to-epithelial transition of pancreatic CSCs.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Limoninas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Limoninas/metabolismo , Simulação de Acoplamento Molecular , Nanopartículas/administração & dosagem , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA