Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Front Immunol ; 15: 1422864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39411717

RESUMO

The possibility of impaired cognitive function during deep space flight missions or while living on a Martian colony is a critical point of concern and pleads for further research. In addition, a fundamental gap exists both in our understanding and application of countermeasures for the consequences of long duration space travel and/or living in an extreme environment such as on the Moon or Mars. Previous studies, while heavily analyzing pre- and post-flight conditions, mostly fail to appreciate the cognitive stressors associated with space radiation, microgravity, confinement, hostile or closed environments, and the long distances from earth. A specific understanding of factors that affect cognition as well as structural and/or physiological changes in the brains of those on a space mission in addition to new countermeasures should result in improved health of our astronauts and reduce risks. At the core of cognitive changes are mechanisms we typically associate with aging, such as inflammatory responses, changes in brain metabolism, depression, and memory impairments. In fact, space flight appears to accelerate aging. In this review, we will discuss the importance of monitoring inflammatory and immune system mediators such as nuclear factor kappa B (NF-κB), and mitochondrial changes related to brain metabolism. We conclude with our recommended countermeasures that include pharmacological, metabolic, and nutritional considerations for the risks on cognition during space missions.


Assuntos
Encéfalo , Mitocôndrias , Voo Espacial , Humanos , Encéfalo/metabolismo , Encéfalo/imunologia , Mitocôndrias/metabolismo , Animais , Mediadores da Inflamação/metabolismo , Ausência de Peso/efeitos adversos , Inflamação/imunologia , Inflamação/metabolismo , Cognição
2.
Environ Mol Mutagen ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387375

RESUMO

Bone loss, commonly seen in osteoporosis, is a condition that entails a progressive decline of bone mineral density and microarchitecture, often seen in post-menopausal women. Bone loss has also been widely reported in astronauts exposed to a plethora of stressors and in patients with osteoporosis following radiotherapy for cancer. Studies on mechanisms are well documented but the causal connectivity of events to bone loss development remains incompletely understood. Herein, the adverse outcome pathway (AOP) framework was used to organize data and develop a qualitative AOP beginning from deposition of energy (the molecular initiating event) to bone loss (the adverse outcome). This qualitative AOP was developed in collaboration with bone loss research experts to aggregate relevant findings, supporting ongoing efforts to understand and mitigate human system risks associated with radiation exposures. A literature review was conducted to compile and evaluate the state of knowledge based on the modified Bradford Hill criteria. Following review of 2029 studies, an empirically supported AOP was developed, showing the progression to bone loss through many factors affecting the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The structural, functional, and quantitative basis of each proposed relationship was defined, for inference of causal changes between key events. Current knowledge and its gaps relating to dose-, time- and incidence-concordance across the key events were identified, as well as modulating factors that influence linkages. The new priorities for research informed by the AOP highlight areas for improvement to enable development of a quantitative AOP used to support risk assessment strategies for space travel or cancer radiotherapy.

3.
Nat Commun ; 15(1): 9149, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443444

RESUMO

MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.


Assuntos
Aprendizado Profundo , MicroRNAs , Peixe-Zebra , MicroRNAs/genética , MicroRNAs/metabolismo , Peixe-Zebra/genética , Animais , Humanos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Redes Neurais de Computação
4.
Commun Biol ; 7(1): 1268, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369042

RESUMO

In the era of renewed space exploration, comprehending the effects of the space environment on human health, particularly for deep space missions, is crucial. While extensive research exists on the impacts of spaceflight, there is a gap regarding female reproductive risks. We hypothesize that space stressors could have enduring effects on female health, potentially increasing risks for future pregnancies upon return to Earth, particularly related to small-for-gestational-age (SGA) fetuses. To address this, we identify a shared microRNA (miRNA) signature between SGA and the space environment, conserved across humans and mice. These miRNAs target genes and pathways relevant to diseases and development. Employing a machine learning approach, we identify potential FDA-approved drugs to mitigate these risks, including estrogen and progesterone receptor antagonists, vitamin D receptor antagonists, and DNA polymerase inhibitors. This study underscores potential pregnancy-related health risks for female astronauts and proposes pharmaceutical interventions to counteract the impact of space travel on female health.


Assuntos
Recém-Nascido Pequeno para a Idade Gestacional , MicroRNAs , Voo Espacial , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Animais , Camundongos , Recém-Nascido , Ausência de Peso/efeitos adversos
6.
PLoS One ; 19(8): e0307450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39178184

RESUMO

Adenosine to inosine (A-to-I) RNA editing by ADAR1 has been implicated in maintaining self-tolerance, preventing autoimmunity, and mediating antiviral immunity. Foreign viral double-stranded RNA triggers rapid interferon response and activates ADAR1 in the host immune system. Emerging data points to a role of ADAR1 A-to-I editing in the inflammatory response associated with severe COVID-19 disease. We identify A-to-I editing events within human whole transcriptome data from SARS-CoV-2 infected individuals, non-infected individuals, and individuals with other viral illnesses from nasopharyngeal swabs. High levels of RNA editing in host cells are associated with low SARS-CoV-2 viral load (p = 9.27 E-06), suggesting an inhibitory effect of ADAR1 on viral infection. Additionally, we find differentially expressed genes associated with RNA-modifications and interferon response. Single cell RNA-sequencing analysis of SARS-CoV-2 infected nasopharyngeal swabs reveals that cytotoxic CD8 T cells upregulate ADAR1 in COVID-19 positive samples (p = 0.0269). We further reveal ADAR1 expression increases with CD4 and CD8 T cell activation, and knockdown of ADAR1 leads to apoptosis and aberrant IL-2 secretion. Together, our data suggests A-to-I RNA editing is required to maintain healthy homeostasis of activated T cells to combat SARS-CoV-2 infection.


Assuntos
Adenosina Desaminase , COVID-19 , Homeostase , Edição de RNA , Proteínas de Ligação a RNA , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Viral , Inosina/metabolismo , Adenosina/metabolismo , Ativação Linfocitária/imunologia
7.
Nat Commun ; 15(1): 4927, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862545

RESUMO

It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.


Assuntos
Hemoglobinas , Humanos , Hemoglobinas/metabolismo , Hemoglobinas/genética , Voo Espacial , Regulação da Expressão Gênica , Eritropoese/genética , Perfilação da Expressão Gênica/métodos
8.
Commun Med (Lond) ; 4(1): 106, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862781

RESUMO

BACKGROUND: Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS: To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS: Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION: Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.


Spaceflight is a hostile environment which can lead to health problems in astronauts, including in the skin. It is not currently well understood why these skin problems occur. Here, we analyzed data from the skin of space flown mice and astronauts to try and identify possible explanations for these skin problems. It appears that changes in the activation of genes related to damage to DNA, skin barrier health, and mitochondria (the energy-producing parts of cells) may play a role in these skin problems. Further research will be needed to confirm exactly how these changes influence skin health, which could lead to solutions for preventing and managing such issues in astronauts.

9.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862516

RESUMO

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Assuntos
Análise de Célula Única , Voo Espacial , Transcriptoma , Animais , Feminino , Masculino , Humanos , Camundongos , Astronautas , Citocinas/metabolismo , Linfócitos T/imunologia , Fatores Sexuais , Perfilação da Expressão Gênica , Fosforilação Oxidativa
10.
Commun Biol ; 7(1): 692, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862620

RESUMO

Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes were most prominent in the liver, where we observed inhibition of insulin and estrogen receptor signaling with concomitant hepatic insulin resistance and steatosis. Based on the metabolic demand, metabolic pathways mediated by insulin and estrogen vary among muscles, specifically between the soleus and extensor digitorum longus. In humans, spaceflight induced changes in insulin and estrogen related genes and pathways. Pathway analysis demonstrated spaceflight induced changes in insulin resistance, estrogen signaling, stress response, and viral infection. These data strongly suggest the need for further research on the metabolic and reproductive endocrinologic effects of space travel, if we are to become a successful interplanetary species.


Assuntos
Estrogênios , Insulina , Voo Espacial , Animais , Insulina/metabolismo , Estrogênios/metabolismo , Humanos , Camundongos , Masculino , Feminino , Transcriptoma , Transdução de Sinais , Camundongos Endogâmicos C57BL , Metabolismo Energético/genética , Resistência à Insulina/genética , Fígado/metabolismo , Adulto , Regulação da Expressão Gênica
11.
Nat Commun ; 15(1): 4774, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862473

RESUMO

Mounting ambitions and capabilities for public and private, non-government sector crewed space exploration bring with them an increasingly diverse set of space travelers, raising new and nontrivial ethical, legal, and medical policy and practice concerns which are still relatively underexplored. In this piece, we lay out several pressing issues related to ethical considerations for selecting space travelers and conducting human subject research on them, especially in the context of non-governmental and commercial/private space operations.


Assuntos
Voo Espacial , Humanos , Voo Espacial/ética , Astronautas
12.
Nat Commun ; 15(1): 4862, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862464

RESUMO

As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.


Assuntos
Coagulação Sanguínea , Barreira Hematoencefálica , Encéfalo , Homeostase , Estresse Oxidativo , Voo Espacial , Animais , Humanos , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Camundongos , Coagulação Sanguínea/fisiologia , Masculino , Secretoma/metabolismo , Camundongos Endogâmicos C57BL , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Biomarcadores/metabolismo , Biomarcadores/sangue , Feminino , Adulto , Proteínas Sanguíneas/metabolismo , Pessoa de Meia-Idade , Leucócitos Mononucleares/metabolismo , Proteoma/metabolismo
13.
Nat Commun ; 15(1): 4773, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862494

RESUMO

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.


Assuntos
Inflamação , Proteínas Proto-Oncogênicas p21(ras) , Pele , Voo Espacial , Humanos , Pele/imunologia , Pele/metabolismo , Pele/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Inflamação/imunologia , Inflamação/genética , Inflamação/metabolismo , Masculino , Análise de Célula Única , Adulto , Pessoa de Meia-Idade , Feminino , Metagenômica/métodos , Perfilação da Expressão Gênica , Multiômica
14.
Nat Commun ; 15(1): 4795, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862487

RESUMO

Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.


Assuntos
Leucócitos Mononucleares , Análise de Célula Única , Voo Espacial , Simulação de Ausência de Peso , Animais , Feminino , Humanos , Masculino , Camundongos , Imunidade Inata , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Quercetina/farmacologia , Transdução de Sinais , Linfócitos T/imunologia , Ausência de Peso
15.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862542

RESUMO

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Assuntos
Astronautas , Radiação Cósmica , MicroRNAs , Voo Espacial , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Radiação Cósmica/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Masculino , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Feminino , Adulto
16.
Sci Rep ; 14(1): 13098, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862573

RESUMO

Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted.


Assuntos
Envelhecimento , Biomarcadores , Fragilidade , Voo Espacial , Envelhecimento/genética , Animais , Camundongos , Humanos , Astronautas , Masculino , Ausência de Peso/efeitos adversos , Sarcopenia/metabolismo
17.
Nature ; 632(8027): 1155-1164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862026

RESUMO

Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study1, but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight2, but almost all of which did not differ from baseline (pre-flight) after return to Earth. Overall, these preliminary civilian spaceflight data suggest that short-duration missions do not pose a significant health risk, and moreover present a rich opportunity to measure the earliest phases of adaptation to spaceflight in the human body at anatomical, cellular, physiological and cognitive levels. Finally, these methods and results lay the foundation for an open, rapidly expanding biomedical database for astronauts3, which can inform countermeasure development for both private and government-sponsored space missions.


Assuntos
Adaptação Fisiológica , Astronautas , Voo Espacial , Adulto , Feminino , Humanos , Masculino , Cognição/fisiologia , Estresse Fisiológico/fisiologia , Fatores de Tempo , Ausência de Peso/efeitos adversos , Monitorização Fisiológica , Multiômica , Adaptação Fisiológica/fisiologia , Bases de Dados como Assunto
18.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798665

RESUMO

Purpose: Two-photon microscopy (2PM) is an emerging clinical imaging modality with the potential to non-invasively assess tissue metabolism and morphology in high-resolution. This study aimed to assess the translational potential of 2PM for improved detection of high-grade cervical precancerous lesions. Experimental Design: 2P images attributed to reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and oxidized flavoproteins (FP) were acquired from the full epithelial thickness of freshly excised human cervical tissue biopsies (N = 62). Fifteen biopsies harbored high-grade squamous intraepithelial lesions (HSILs), 14 biopsies harbored low-grade SILs (LSILs), and 33 biopsies were benign. Quadratic discriminant analysis (QDA) leveraged morphological and metabolic functional metrics extracted from these images to predict the presence of HSILs. We performed gene set enrichment analysis (GSEA) using datasets available on the Gene Expression Omnibus (GEO) to validate the presence of metabolic reprogramming in HSILs. Results: Integrating metabolic and morphological 2P-derived metrics from finely sampled, full-thickness epithelia achieved a high 90.8 ± 6.1% sensitivity and 72.3 ± 11.3% specificity of HSIL detection. Notably, sensitivity (91.4 ± 12.0%) and specificity (77.5 ± 12.6%) were maintained when utilizing metrics from only two images at 12- and 72-µm from the tissue surface. Upregulation of glycolysis, fatty acid metabolism, and oxidative phosphorylation in HSIL tissues validated the metabolic reprogramming captured by 2P biomarkers. Conclusion: Label-free 2P images from as few as two epithelial depths enable rapid and robust HSIL detection through the quantitative characterization of metabolic and morphological reprogramming, underscoring the potential of this tool for clinical evaluation of cervical precancers.

19.
Res Sq ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38645169

RESUMO

Breast cancer is the second most common cancer globally. Most deaths from breast cancer are due to metastatic disease which often follows long periods of clinical dormancy1. Understanding the mechanisms that disrupt the quiescence of dormant disseminated cancer cells (DCC) is crucial for addressing metastatic progression. Infection with respiratory viruses (e.g. influenza or SARS-CoV-2) is common and triggers an inflammatory response locally and systemically2,3. Here we show that influenza virus infection leads to loss of the pro-dormancy mesenchymal phenotype in breast DCC in the lung, causing DCC proliferation within days of infection, and a greater than 100-fold expansion of carcinoma cells into metastatic lesions within two weeks. Such DCC phenotypic change and expansion is interleukin-6 (IL-6)-dependent. We further show that CD4 T cells are required for the maintenance of pulmonary metastatic burden post-influenza virus infection, in part through attenuation of CD8 cell responses in the lungs. Single-cell RNA-seq analyses reveal DCC-dependent impairment of T-cell activation in the lungs of infected mice. SARS-CoV-2 infected mice also showed increased breast DCC expansion in lungs post-infection. Expanding our findings to human observational data, we observed that cancer survivors contracting a SARS-CoV-2 infection have substantially increased risks of lung metastatic progression and cancer-related death compared to cancer survivors who did not. These discoveries underscore the significant impact of respiratory viral infections on the resurgence of metastatic cancer, offering novel insights into the interconnection between infectious diseases and cancer metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA