Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 98(5-8): 151046, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31677819

RESUMO

CRN2 is an actin filament binding protein involved in the regulation of various cellular processes including cell migration and invasion. CRN2 has been implicated in the malignant progression of different types of human cancer. We used CRN2 knock-out mice for analyses as well as for crossbreeding with a Tp53/Pten knock-out glioblastoma mouse model. CRN2 knock-out mice were subjected to a phenotyping screen at the German Mouse Clinic. Murine glioblastoma tissue specimens as well as cultured murine brain slices and glioblastoma cell lines were investigated by immunohistochemistry, immunofluorescence, and cell biological experiments. Protein interactions were studied by immunoprecipitation, pull-down, and enzyme activity assays. CRN2 knock-out mice displayed neurological and behavioural alterations, e.g. reduced hearing sensitivity, reduced acoustic startle response, hypoactivity, and less frequent urination. While glioblastoma mice with or without the additional CRN2 knock-out allele exhibited no significant difference in their survival rates, the increased levels of CRN2 in transplanted glioblastoma cells caused a higher tumour cell encasement of murine brain slice capillaries. We identified two important factors of the tumour microenvironment, the tissue inhibitor of matrix metalloproteinase 4 (TIMP4) and the matrix metalloproteinase 14 (MMP14, synonym: MT1-MMP), as novel binding partners of CRN2. All three proteins mutually interacted and co-localised at the front of lamellipodia, and CRN2 was newly detected in exosomes. On the functional level, we demonstrate that CRN2 increased the secretion of TIMP4 as well as the catalytic activity of MMP14. Our results imply that CRN2 represents a pro-invasive effector within the tumour cell microenvironment of glioblastoma multiforme.


Assuntos
Glioblastoma/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas dos Microfilamentos/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Animais , Glioblastoma/diagnóstico por imagem , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Células Tumorais Cultivadas , Microambiente Tumoral , Inibidor Tecidual 4 de Metaloproteinase
2.
Eur J Cell Biol ; 95(8): 239-51, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27178841

RESUMO

Coronin 1C is an established modulator of actin cytoskeleton dynamics. It has been shown to be involved in protrusion formation, cell migration and invasion. Here, we report the generation of primary fibroblasts from coronin 1C knock-out mice in order to investigate the impact of the loss of coronin 1C on cellular structural organisation. We demonstrate that the lack of coronin 1C not only affects the actin system, but also the microtubule and the vimentin intermediate filament networks. In particular, we show that the knock-out cells exhibit a reduced proliferation rate, impaired cell migration and protrusion formation as well as an aberrant subcellular localisation and function of mitochondria. Moreover, we demonstrate that coronin 1C specifically interacts with the non-α-helical amino-terminal domain ("head") of vimentin. Our data suggest that coronin 1C acts as a cytoskeletal integrator of actin filaments, microtubules and intermediate filaments.


Assuntos
4-Butirolactona/análogos & derivados , Citoesqueleto de Actina/metabolismo , Fibroblastos/metabolismo , Microtúbulos/metabolismo , 4-Butirolactona/metabolismo , Animais , Movimento Celular , Filamentos Intermediários , Camundongos , Camundongos Knockout
3.
BMC Cancer ; 15: 638, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26373535

RESUMO

BACKGROUND: Coronin proteins are known as regulators of actin-based cellular processes, and some of them are associated with the malignant progression of human cancer. Here, we show that expression of coronin 2A is up-regulated in human colon carcinoma. METHODS: This study included 26 human colon tumour specimens and 9 normal controls. Expression and localisation of coronin 2A was studied by immunohistochemistry, immunofluorescence imaging, cell fractionation, and immunoblotting. Functional roles of coronin 2A were analysed by over-expression and knock-down of the protein. Protein interactions were studied by co-immunoprecipitation and pull-down experiments, mass spectrometry analyses, and in vitro kinase and methylation assays. RESULTS: Histopathological investigation revealed that the expression of coronin 2A in colon tumour cells is up-regulated during the adenoma-adenocarcinoma progression. At the subcellular level, coronin 2A localised to multiple compartments, i.e. F-actin stress fibres, the front of lamellipodia, focal adhesions, and the nuclei. Over-expression of coronin 2A led to a reduction of F-actin stress fibres and elevated cell migration velocity. We identified two novel direct coronin 2A interaction partners. The interaction of coronin 2A with MAPK14 (mitogen activated protein kinase 14 or MAP kinase p38α) led to phosphorylation of coronin 2A and also to activation of the MAPK14 pathway. Moreover, coronin 2A interacted with PRMT5 (protein arginine N-methyltransferase 5), which modulates the sensitivity of tumour cells to TRAIL-induced cell death. CONCLUSIONS: We show that increased expression of coronin 2A is associated with the malignant phenotype of human colon carcinoma. Moreover, we linked coronin 2A to MAPK14 and PRMT5 signalling pathways involved in tumour progression.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenoma/genética , Adenoma/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/genética , Transdução de Sinais , Adenocarcinoma/patologia , Adenoma/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Transporte Proteico , Proteína-Arginina N-Metiltransferases/metabolismo , Pseudópodes/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fibras de Estresse/metabolismo , Especificidade por Substrato
4.
Biochem Biophys Res Commun ; 463(4): 1210-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26086101

RESUMO

Protein turnover and quality control by the proteasome is of paramount importance for cell homeostasis. Dysfunction of the proteasome is associated with aging processes and human diseases such as neurodegeneration, cardiomyopathy, and cancer. The regulation, i.e. activation and inhibition of this fundamentally important protein degradation system, is still widely unexplored. We demonstrate here that the evolutionarily highly conserved type II triple-A ATPase VCP and the proteasome inhibitor PSMF1/PI31 interact directly, and antagonistically regulate proteasomal activity. Our data provide novel insights into the regulation of proteasomal activity.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteínas/fisiologia , Biopolímeros , Humanos , Proteína com Valosina
5.
Eur J Cell Biol ; 89(11): 828-38, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20727616

RESUMO

The expression of connexin 43 (Cx43) has been shown to correlate with an enhanced migration of several cell types such as glioma or neural crest cells, but the mechanism remains unclear. We studied whether Cx43 also affects migration in non-neural cells and whether or not this is related to gap junction formation. Therefore, we analysed the migratory activity of HeLa cells under conditions of controlled connexin (Cx) expression. The expression of Cx43 enhanced their migration significantly as compared to Cx deficient wild-type cells. Expression of only the carboxyl tail of Cx43 (Cx43CT, AA 257-382) without channel forming capacity enhanced migration similarly as the full length protein. In contrast, the expression of the N-terminal part of Cx43 (Cx43NT, AA 1-257), which partially retained the gap junction channel function of Cx43, did not increase migration. The enhanced cell migration of HeLa cells expressing either full length Cx43 or the Cx43CT was associated with an increased activation of the p38 MAP kinase. The additional incubation with a specific inhibitor of p38 activation diminished the migration of HeLa-Cx43 cells to levels of control transfected cells. As a proof of concept, we studied whether Cx43 also modulates the migration of endothelial progenitor cells (EPC) which play an important role in angiogenesis. In these cells, which expressed Cx43 as the only connexin, the downregulation of Cx43 by siRNA resulted in a significantly decreased migration. These results demonstrate that expression of Cx43 augments migration via modulation of p38 MAP kinase activity. The carboxyl tail of Cx43 plays an essential role in this signalling pathway which is independent of gap junction function.


Assuntos
Movimento Celular/fisiologia , Conexina 43/fisiologia , Junções Comunicantes/fisiologia , Animais , Western Blotting , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Regulação para Baixo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Transdução de Sinais , Transfecção
6.
Ann N Y Acad Sci ; 1100: 524-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17460218

RESUMO

Normal human epidermal keratinocytes (NHEK) show both the Hayflick phenomenon and differentiation in vitro. The aim of this study was to induce senescence in keratinocytes using two sugars, glucose and glyoxal. Induction of senescence in early-passage NHEK was characterized by monitoring cell morphology, short-term growth characteristics, cell proliferation, and viability assay. In addition, apoptosis, senescence-associated (SA) beta-gal activity, proteasomal activity and glycation, and glycoxidation of total proteins were determined. Our results show that a 3-day treatment with 100 mM glucose or 0.1 mM glyoxal induces in early-passage NHEK various cellular and biochemical characteristics comparable to those observed in serially subcultured late passage NHEK. Furthermore, sugar-treated prematurely aged NHEK showed impaired differentiation, as measured by the quantification of involucrin. There is preliminary evidence that a preexposure of NHEK to mild heat shock (41 degrees C, 1 h, 6 h in advance) can abrogate some of the sugar-induced negative effects, which is an example of mild stress-induced hormesis. This experimental model can be useful to study the effects of potential antiaging interventions.


Assuntos
Carboidratos/farmacologia , Células Epidérmicas , Queratinócitos/citologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Glucose/metabolismo , Glucose/farmacologia , Glioxal/farmacologia , Proteínas de Choque Térmico/metabolismo , Humanos , Pele/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA