Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406146

RESUMO

The surprising lack of literature on using the very common wood adhesive polymeric methylenediphenyl diisocyanate (pMDI) with protein adhesives may be because of perceived poor improvement of protein wet strength. Reacting pMDI with the flour (soy or canola) before adding water unexpectedly improves wood bonding compared to adding the pMDI to an aqueous protein slurry. Mixing the liquid pMDI with the oilseed flour produces a free-flowing powder with up to 50% of pMDI to flour by weight. The mixture slowly reacts since the isocyanate band in the infrared spectra remains for several days but diminishes with time. Adding pMDI increases the dry and wet strength of wood bonds using Automated Bonding Evaluation System (ABES) testing and levels off at about 50%. Similarly, adding the polyamidoamine-epichlorohydrin (PAE) cross-linker to the oilseed flour increases dry and wet bond strength, but the effect levels off at about 20% of PAE. However, the combination of these two cross-linkers added to the flours results in greater dry and wet shear strength than either one alone. In addition to tests using ABES (ASTM D 7998), the increase in strengths is also observed-but with a diminished effect-in bonding plywood using the interior plywood strength test ASTM D 906.

2.
J Environ Manage ; 270: 110853, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32501240

RESUMO

Lignocellulosic hydrogels are valuable bio-products that have been considered widely in recent investigations. Also, application of low value recycled fibers for high value added products can be of much interest. In this respect, current research has focused on producing hydrogel from recycled old corrugated container (OCC) resources, using 1-butyl-3-methyl-imidazolium chloride ionic liquid (IL) as a green solvent. The results indicated that the IL successfully dissolved OCC fibers, allowing the production of lignocellulosic hydrogel. Considering total water absorption amount as a main criterion for evaluation of hydrogels, the fabricated hydrogel showed promising results (up to 4700% water absorption). X-ray diffraction analysis confirmed obvious reduction in cellulose material crystallinity and crystallite size as a result of the process. Field emission scanning electron microscopy also demonstrated the microstructure of the hydrogel, pore size and shape in the hydrogel, which well supported the laboratory research results. Furthermore, the effect of processing parameters showed that specimens washed with distilled water as the anti-solvent resulted in the highest water absorption. Infrared spectroscopy can be used to suggest the presence of more lignin content in the hydrogel washed with ethanol. Moreover, the best water re-absorption results were observed for the hydrogel washed with distilled water.


Assuntos
Hidrogéis , Líquidos Iônicos , Lignina , Solventes
3.
Carbohydr Polym ; 206: 11-20, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553303

RESUMO

The aim of this research was to investigate the effect of functionalized cellulose nanocrystals (CNC) on the performance of urea-formaldehyde (UF) adhesive for the production of medium density fiberboard (MDF). Surface modification of CNC was performed using 3-Aminopropyltriethoxysilane (APTES). Some physical and thermal properties of reinforced and neat UF as well as formaldehyde emission and some mechanical (modulus of rupture (MOR), modulus of elasticity (MOE) and internal bond strength (IB)) and physical properties (thickness swelling (TS) and water absorption (WA)) of the resulting MDF panels were determined. Based on the results, upon incorporation of modified CNC to the system, solid content, density, viscosity and free formaldehyde of UF adhesives decreased while gel time increased. Depending on addition of the modified CNC loading in the panels, the formaldehyde emission values varied from 11% to 17% lower than the panels made from neat UF. In comparison to the control samples, panels made with UF containing 2% modified CNC had 29.3% and 38.2% higher MOR and MOE respectively.

5.
Int J Biol Macromol ; 106: 1288-1296, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28855133

RESUMO

Surface functionalization of cellulose nanocrystals (CNCs) is valuable option to tailor properties as well as increase opportunities for their application. In this study, the surface of CNCs was functionalized with 3-aminopropyltriethoxysilane (APTES), without using hazardous solvents and by a direct, simple and straightforward method. APTES was firstly hydrolyzed in water and then adsorbed onto CNC through hydrogen bonds, finally the chain hydrocarbon was covalently linked to the surface of CNC through SiOC bonds which formed via the condensation reaction between hydroxyl and silanol groups. The chemical modification of the CNCs surface was confirmed by ATR-IR and NMR spectroscopy. Experiments conducted by AFM and XRD showed no significant change in the CNC dimensions and crystalline structure as a result of the modification. The EDX and XPS results confirmed the exsistence of APTES onto the CNCs. Silylated CNC exhibited good thermal stability and a greater amount of residual char was formed at 500 °C compared to non-chemically modified CNC. Thus, The silylation of CNCs may offer applications in composite manufacturing, where these nanoparticles have limited dispersibility in hydrophobic polymer matrices, and as nano-adsorbers due to the presence of amino groups attached on the surface.


Assuntos
Celulose/química , Nanopartículas/química , Propilaminas/química , Silanos/química , Solventes/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Polímeros/química , Propriedades de Superfície , Água/química
6.
J Nanosci Nanotechnol ; 16(6): 5791-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427633

RESUMO

The objective of this study was to extract cellulose nanofibrils (CNFs) from Linter dissolving pulp through a simple and environmentally friendly physical method of refining pretreatment coupled with ultrafine grinder. The morphology, structure and properties of the Linter pulp and obtained NFCs were investigated using Optical Microscopy (OM), electron microscopy (SEM), Atomic Force Microscopy (AFM), Fourier transformed infrared (FTIR) spectra, X-ray diffraction (XRD) and Thermogravimetric (TG) analysis. The OM results indicate that, the Linter Pulp had length and wide mainly ranged 1.3 mm and 13 µm respectively. Based on AFM images, most of extracted nanocellulose had spherical shape and the average of nanocellulose diameter was varied between 30-70 nm when measured by AFM and SEM. Also the FTIR spectra confirmed that the basic structure of nanocellulose was maintained and no derivative was formed. The X-ray results show that by this method of extraction, the crystallinity index of Nanocellulose isolated (62%) decreased in compared to Linter Pulp (79.5%). Also Linter pulp decomposes at higher temperature (280 degrees C) than isolated nanocellulose (240 degrees C).

7.
Int J Biol Macromol ; 70: 537-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25036597

RESUMO

Nanocrystalline cellulose (NCC) was prepared from microcrystalline cellulose (MCC) with particle size of 24.7 µm using sulfuric acid hydrolysis technique. The obtained NCC revealed size of 0-100 nm, which the major part of them was about 30 nm. Then different contents (2.5, 5 and 10 wt%) of these NCC incorporated in agar film solution and the morphology, structure, and properties of the nanocomposite films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), mechanical, physical and optical testing. Results showed that the water vapor permeability (WVP) and water solubility (WS) of the agar-based nanocomposite films significantly (P<0.05) decreased about 13% and 21%, respectively, upon increasing the NCC content to 10%. Tensile strength (TS) and Young's modulus (YM) values of nanocomposite films significantly increased (P≤0.05) with addition of NCC, whereas the elongation percent (E%) decreased not significantly (P>0.05). In addition, swelling percentage, transparency and light transmission of the films were decreased by incorporating NCC into polymer matrix.


Assuntos
Ágar/química , Celulose/química , Nanocompostos/química , Fenômenos Mecânicos , Microscopia de Força Atômica , Nanocompostos/ultraestrutura , Permeabilidade , Solubilidade , Vapor , Termodinâmica , Viscosidade , Difração de Raios X
8.
Int J Biol Macromol ; 54: 166-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23262388

RESUMO

A bio-based nanocomposite was developed by incorporation of cellulose nanoparticles (CN) obtained from sulfuric acid hydrolysis into alginate biopolymer using solution casting method. The effect of CN loading content (1, 3, 5 and 10 wt%) on microstructural, physical, mechanical and optical properties of the nanocomposites were characterized. The results showed that water solubility and water vapor permeability of the nanocomposites decreased by about 40% and 17%, respectively, upon increasing the CN content to 10%. In addition, the crystalline structure of the CN increased surface hydrophobicity of the alginate film by about 98%. The tensile strength value of the composite films increased from 18.03 to 22.4 MPa with increasing NC content from 0 to 5%; but, it decreased with further increase of the filler content. Nevertheless, film transparency decreased with CN incorporation, especially in high level (10%), which suggested the occurrence of partial agglomeration of the fillers at 10% that coincided with microstructural and mechanical results.


Assuntos
Alginatos/química , Celulose/química , Nanocompostos/química , Nanopartículas/química , Água/química , Módulo de Elasticidade , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Umidade , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Fenômenos Ópticos , Permeabilidade , Solubilidade , Vapor , Propriedades de Superfície , Resistência à Tração , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA