Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Med Chem Lett ; 14(3): 312-318, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36923909

RESUMO

Fibroblast growth factor receptors (FGFRs) are transmembrane receptor tyrosine kinases that regulate multiple physiological processes. Aberrant activation of FGFR2 and FGFR3 has been linked to the pathogenesis of many tumor types, including cholangiocarcinoma and bladder cancer. Current therapies targeting the FGFR2/3 pathway exploiting small-molecule kinase inhibitors are associated with adverse events due to undesirable inhibition of FGFR1 and FGFR4. Isoform-specific FGFR2 and FGFR3 inhibitors that spare FGFR1 and FGFR4 could offer a favorable toxicity profile and improved therapeutic window to current treatments. Herein we disclose the discovery of dual FGFR2/FGFR3 inhibitors exploiting scaffold repurposing of a previously reported ALK2 tool compound. Structure-based drug design and structure-activity relationship studies were employed to identify selective and orally bioavailable inhibitors with equipotent activity toward wild-type kinases and a clinically observed gatekeeper mutant.

2.
ACS Med Chem Lett ; 14(1): 5-10, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36655125

RESUMO

In spite of the great success of immune checkpoint inhibitors in immune-oncology therapy, an urgent need still exists to identify alternative approaches to broaden the scope of therapeutic coverage. Hematopoietic progenitor kinase 1 (HPK1), also known as MAP4K1, functions as a negative regulator of activation signals generated by the T cell antigen receptor. Herein we report the discovery of novel pyrazolopyridine derivatives as selective inhibitors of HPK1. The structure-activity relationship campaign led to the discovery of compound 16, which has shown promising enzymatic and cellular potency with encouraging kinome selectivity. The outstanding pharmacokinetic profiles of 16 in rats and monkeys supported further evaluations of its efficacy and safety in preclinical models.

3.
ACS Med Chem Lett ; 14(1): 116-122, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36655134

RESUMO

Herein we report the discovery of a novel biaryl amide series as selective inhibitors of hematopoietic protein kinase 1 (HPK1). Structure-activity relationship development, aided by molecular modeling, identified indazole 5b as a core for further exploration because of its outstanding enzymatic and cellular potency coupled with encouraging kinome selectivity. Late-stage manipulation of the right-hand aryl and amine moieties surmounted issues of selectivity over TRKA, MAP4K2, and STK4 as well as generating compounds with balanced in vitro ADME profiles and promising pharmacokinetics.

4.
Cancer Discov ; 12(6): 1482-1499, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35254416

RESUMO

Blocking the activity of the programmed cell death protein 1 (PD-1) inhibitory receptor with therapeutic antibodies against either the ligand (PD-L1) or PD-1 itself has proven to be an effective treatment modality for multiple cancers. Contrasting with antibodies, small molecules could demonstrate increased tissue penetration, distinct pharmacology, and potentially enhanced antitumor activity. Here, we describe the identification and characterization of INCB086550, a novel, oral, small-molecule PD-L1 inhibitor. In vitro, INCB086550 selectively and potently blocked the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, and induced stimulation-dependent cytokine production in primary human immune cells. In vivo, INCB086550 reduced tumor growth in CD34+ humanized mice and induced T-cell activation gene signatures, consistent with PD-L1/PD-1 pathway blockade. Preliminary data from an ongoing phase I study confirmed PD-L1/PD-1 blockade in peripheral blood cells, with increased immune activation and tumor growth control. These data support continued clinical evaluation of INCB086550 as an alternative to antibody-based therapies. SIGNIFICANCE: We have identified a potent small-molecule inhibitor of PD-L1, INCB086550, which has biological properties similar to PD-L1/PD-1 monoclonal antibodies and may represent an alternative to antibody therapy. Preliminary clinical data in patients demonstrated increased immune activation and tumor growth control, which support continued clinical evaluation of this approach. See related commentary by Capparelli and Aplin, p. 1413. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Humanos , Inibidores de Checkpoint Imunológico , Ativação Linfocitária , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1
5.
Drug Metab Dispos ; 42(10): 1656-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063672

RESUMO

The clinical development of fedratinib, a Janus kinase (JAK2) inhibitor, was terminated after reports of Wernicke's encephalopathy in myelofibrosis patients. Since Wernicke's encephalopathy is induced by thiamine deficiency, investigations were conducted to probe possible mechanisms through which fedratinib may lead to a thiamine-deficient state. In vitro studies indicate that fedratinib potently inhibits the carrier-mediated uptake and transcellular flux of thiamine in Caco-2 cells, suggesting that oral absorption of dietary thiamine is significantly compromised by fedratinib dosing. Transport studies with recombinant human thiamine transporters identified the individual human thiamine transporter (hTHTR2) that is inhibited by fedratinib. Inhibition of thiamine uptake appears unique to fedratinib and is not shared by marketed JAK inhibitors, and this observation is consistent with the known structure-activity relationship for the binding of thiamine to its transporters. The results from these studies provide a molecular basis for the development of Wernicke's encephalopathy upon fedratinib treatment and highlight the need to evaluate interactions of investigational drugs with nutrient transporters in addition to classic xenobiotic transporters.


Assuntos
Proteínas de Membrana Transportadoras/efeitos dos fármacos , Pirrolidinas/efeitos adversos , Sulfonamidas/efeitos adversos , Deficiência de Tiamina/induzido quimicamente , Tiamina/metabolismo , Encefalopatia de Wernicke/etiologia , Encefalopatia de Wernicke/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Janus Quinase 2/antagonistas & inibidores , Masculino , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacocinética , Pirrolidinas/sangue , Pirrolidinas/farmacocinética , Ratos , Sulfonamidas/sangue , Sulfonamidas/farmacocinética
6.
Clin Cancer Res ; 17(22): 7127-38, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21918175

RESUMO

PURPOSE: The c-MET receptor tyrosine kinase plays important roles in the formation, progression, and dissemination of human cancer and presents an attractive therapeutic target. This study describes the preclinical characterization of INCB28060, a novel inhibitor of c-MET kinase. EXPERIMENTAL DESIGN: Studies were conducted using a series of in vitro and in vivo biochemical and biological experiments. RESULTS: INCB28060 exhibits picomolar enzymatic potency and is highly specific for c-MET with more than 10,000-fold selectivity over a large panel of human kinases. This inhibitor potently blocks c-MET phosphorylation and activation of its key downstream effectors in c-MET-dependent tumor cell lines. As a result, INCB28060 potently inhibits c-MET-dependent tumor cell proliferation and migration and effectively induces apoptosis in vitro. Oral dosing of INCB28060 results in time- and dose-dependent inhibition of c-MET phosphorylation and tumor growth in c-MET-driven mouse tumor models, and the inhibitor is well tolerated at doses that achieve complete tumor inhibition. In a further exploration of potential interactions between c-MET and other signaling pathways, we found that activated c-MET positively regulates the activity of epidermal growth factor receptors (EGFR) and HER-3, as well as expression of their ligands. These effects are reversed with INCB28060 treatment. Finally, we confirmed that circulating hepatocyte growth factor levels are significantly elevated in patients with various cancers. CONCLUSIONS: Activated c-MET has pleiotropic effects on multiple cancer-promoting signaling pathways and may play a critical role in driving tumor cell growth and survival. INCB28060 is a potent and selective c-MET kinase inhibitor that may have therapeutic potential in cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Receptor Cross-Talk/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Imidazóis , Camundongos , Camundongos Nus , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-3/metabolismo , Triazinas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Curr Chem Genomics ; 4: 27-33, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20556206

RESUMO

High-throughput screening (HTS) of ~50,000 chemical compounds against phosphorylated and unphosphorylated c-Met, a tyrosine kinase receptor for hepatocyte growth factor (HGF), was carried out in order to compare hit rates, hit potencies and also to explore scaffolds that might serve as potential leads targeting only the unphosphorylated form of the enzyme. The hit rate and potency for the confirmed hit molecules were higher for the unphosphoryalted form of c-Met. While the target of small molecule inhibitor discovery efforts has traditionally been the phosphorylated form, there are now examples of small molecules that target unphosphorylated kinases. Screening for inhibitors of unphosphorylated kinases may represent a complementary approach for prioritizing chemical scaffolds for hit-to-lead follow ups.

8.
Biochemistry ; 48(50): 12014-23, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19883076

RESUMO

Stopped-flow absorption and isotope effect experiments have been used to dissect the mechanism of formation of the enzyme cysteinyl persulfide intermediate in the reaction of a cysteine desulfurase (CD), CD0387 from Synechocystis sp. strain PCC 6803. Seven accumulating intermediates have been identified and tentatively mapped onto the CD chemical mechanism originally proposed by Dean, White, and co-workers [Zheng, L., White, R. H., Cash, V. L., and Dean, D. R. (1994) Biochemistry 33, 4714-4720]. The first intermediate with lambda(max) approximately 350 nm is assigned as either a gem-diamine complex or a thiol adduct formed by nucleophilic attack of either the amine group or the sulfhydryl group of the substrate on the internal aldimine form of the pyridoxal 5'-phosphate (PLP) cofactor. The second intermediate, with absorption features at approximately 417 and approximately 340 nm, is assigned as Cys aldimine and Cys ketimine forms in rapid equilibrium. In agreement with this assignment, a significant substrate alpha-deuterium equilibrium isotope effect ((2)H-EIE) favoring the aldimine form (417 nm) is observed in the second state produced in either wild-type CD0387 or the inactive C326A variant protein, which lacks the nucleophilic cysteine residue and is thus unable to proceed beyond this state unless "rescued" by a high concentration of an exogenous thiol. The third intermediate has an additional approximately 506 nm feature, characteristic of a quinonoid form, along with the features of the previous state. Its assignment as Ala aldimine, quinonoid, and ketimine forms in rapid equilibrium, which associates its formation with C-S bond cleavage and persulfide formation, is supported by its failure to develop in the C326A variant and the normal kinetic isotope effect ((2)H-KIE) on its formation, which is similar in magnitude to the (2)H-EIE disfavoring Cys-ketimine (from which the third state forms) in the second state. Decay of the Ala quinonoid absorption is tentatively attributed to a conformational change by the enzyme that disfavors this form in its equilibrium with Ala aldimine and Ala ketimine. Subsequent decay of the ketimine absorption ( approximately 340 nm) is attributed to release of Ala from the cofactor with an observed rate constant of 10 s(-1), the slowest step in the persulfide-forming half-reaction. The enzyme-persulfide.Ala complex dissociates rapidly with a K(d) of 98 mM. The final state with lambda(max) approximately 350 nm is assigned as a dead-end complex between the enzyme-persulfide and a second l-cysteine, which adds to the cofactor via its sulfhydryl group, possibly forming a cyclic thiazolidine species.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Sulfetos/metabolismo , Synechocystis/enzimologia , Alanina/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/antagonistas & inibidores , Liases de Carbono-Enxofre/genética , Domínio Catalítico/genética , Cisteína/genética , Cisteína/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Espectrofotometria , Especificidade por Substrato/genética , Synechocystis/genética
9.
J Phys Chem B ; 113(36): 12161-3, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19685884

RESUMO

We demonstrate that the steady state reaction of lysine 5,6-aminomutase with substrate analogue 4-thia-l-lysine generates a radical intermediate, which accumulates in the enzyme to an electron paramagnetic resonance (EPR) detectable level. EPR line width narrowing of approximately 1 mT due to [4'-(2)H] labeling of the pyridoxal-5'-phosphate (PLP), an isotropic hyperfine coupling of 40 MHz for the proton at C4' of PLP derived from (2)H electron nuclear double resonance (ENDOR) measurement, and spin density delocalization onto the (31)P of PLP realized from observations of the (31)P ENDOR signal provide unequivocal identification of the radical as a substrate-PLP-based species. X- and Q-band EPR spectra fittings demonstrate that this radical is spin coupled with the low spin Co(2+) in cob (II) alamin and the distance between the two species is about 10 A. These results provide direct evidence for the active site motion upon substrate binding, bringing the adenosylcobalamin to the proximity of substrate-PLP for subsequent H-atom abstraction and for the notion that lysine 5,6-aminomutase functions by a radical mechanism. Observation of (2)H-ENDOR signal also provides a reliable hyperfine coupling constant for future comparison with quantum-mechanical-based calculations to gain further insight into the molecular structure of this steady state radical intermediate.


Assuntos
Cisteína/análogos & derivados , Transferases Intramoleculares/química , Cisteína/química , Radicais Livres , Conformação Molecular , Estrutura Molecular , Inibidores da Síntese de Proteínas/química
10.
J Am Chem Soc ; 128(31): 10145-54, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881644

RESUMO

Lysine 2,3-aminomutase (LAM) utilizes a [4Fe-4S] cluster, S-adenosyl-L-methionine (SAM), and pyridoxal 5'-phosphate (PLP) to isomerize L-alpha-lysine to L-beta-lysine. LAM is a member of the radical-SAM enzyme superfamily in which a [4Fe-4S]+ cluster reductively cleaves SAM to produce the 5'-deoxyadenosyl radical, which abstracts an H-atom from substrate to form 5'-deoxyadenosine (5'-Ado) and the alpha-Lys* radical (state 3 (Lys*)). This radical isomerizes to the beta-Lys* radical (state 4(Lys*)), which then abstracts an H-atom from 5'-Ado to form beta-lysine and the 5'-deoxyadenosyl radical; the latter then regenerates SAM. We use 13C, 1,2H, 31P, and 14N ENDOR to characterize the active site of LAM in intermediate states that contain the isomeric substrate radicals or analogues. With L-alpha-lysine as substrate, we monitor the state with beta-Lys*. In parallel, we use two substrate analogues that generate stable analogues of the alpha-Lys* radical: trans-4,5-dehydro-L-lysine (DHLys) and 4-thia-L-lysine (SLys). This first glimpse of the motions of active-site components during catalytic turnover suggests a possible major movement of PLP during catalysis. However, the principal focus of this work is on the relative positions of the carbons involved in H-atom transfer. We conclude that the active site facilitates hydrogen atom transfer by enforcing van der Waals contact between radicals and their reacting partners. This constraint enables the enzyme to minimize and even eliminate side reactions of highly reactive species such as the 5'-deoxyadensosyl radical.


Assuntos
Transferases Intramoleculares/metabolismo , Análise Espectral/métodos , Sítios de Ligação , Transferases Intramoleculares/química , Modelos Moleculares
11.
Proc Natl Acad Sci U S A ; 101(45): 15870-5, 2004 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-15514022

RESUMO

Lysine 5,6-aminomutase is an adenosylcobalamin and pyridoxal-5'-phosphate-dependent enzyme that catalyzes a 1,2 rearrangement of the terminal amino group of dl-lysine and of l-beta-lysine. We have solved the x-ray structure of a substrate-free form of lysine-5,6-aminomutase from Clostridium sticklandii. In this structure, a Rossmann domain covalently binds pyridoxal-5'-phosphate by means of lysine 144 and positions it into the putative active site of a neighboring triosephosphate isomerase barrel domain, while simultaneously positioning the other cofactor, adenosylcobalamin, approximately 25 A from the active site. In this mode of pyridoxal-5'-phosphate binding, the cofactor acts as an anchor, tethering the separate polypeptide chain of the Rossmann domain to the triosephosphate isomerase barrel domain. Upon substrate binding and transaldimination of the lysine-144 linkage, the Rossmann domain would be free to rotate and bring adenosylcobalamin, pyridoxal-5'-phosphate, and substrate into proximity. Thus, the structure embodies a locking mechanism to keep the adenosylcobalamin out of the active site and prevent radical generation in the absence of substrate.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Domínio Catalítico , Clostridium sticklandii/enzimologia , Cobamidas/metabolismo , Cristalografia por Raios X , Radicais Livres/química , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/metabolismo , Eletricidade Estática
12.
Biochemistry ; 43(38): 12220-6, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15379560

RESUMO

Cysteine desulfurases (CDs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that cleave sulfur from cysteine via an enzyme cysteinyl persulfide intermediate. In vitro studies of these enzymes have generally employed dithiothreitol as a cosubstrate to reductively cleave the persulfide intermediate, and it has been suggested that persulfide cleavage is the rate-limiting step for catalysis. In this study, the kinetics and mechanisms of cleavage of the persulfide intermediate in Slr0387 (CD-0387), a sequence group I (NifS/IscS-like) cysteine desulfurase from Synechocystis sp. PCC 6803, by physiological and nonphysiological reductants have been examined, and the extent to which this step is rate-limiting for catalysis has been determined. The observations that dithiols such as dithiothreitol (DTT) cleave the persulfide with approximately 100-fold greater efficiency than structurally similar monothiols such as 2-mercaptoethanol (2-ME), that cleavage by DTT exhibits saturation kinetics, and that the dependence of the observed first-order rate constant for persulfide cleavage by DTT on the concentration of the dithiol corresponds precisely with that for formation of a complex between DTT and the PLP cofactor of the resting enzyme suggest that persulfide cleavage by dithiols occurs by prior formation of a complex, in which addition of one thiol to the cofactor positions the second thiol for attack. This conclusion and the observation that a second molecule of L-cysteine can bind to the cofactor in the persulfide form of CD-0387 explain why several CDs are subject to potent inhibition by L-cysteine during turnover with DTT: binding of L-cysteine prevents formation of the PLP-DTT adduct and renders the dithiol no better than a monothiol, which must react with the persulfide in bimolecular fashion. Consistent with this rationale, catalysis by CD-0387 with 2-ME as cosubstrate, while less efficient, is not subject to potent inhibition by L-cysteine. The similarity of the maximum rate constant for persulfide cleavage by DTT to k(cat) suggests that persulfide cleavage is, in fact, primarily rate-determining, and this conclusion is confirmed by the observation that k(cat) is approximately 10-fold greater when tris-(2-carboxyethyl)phosphine (TCEP), the most efficient persulfide cleaver identified, is used as the reducing cosubstrate. The faster turnover with TCEP provides a chemical model for activation of CD-0387 and other CDs by the presence of accessory factors that serve as efficient acceptors of the persulfide sulfur.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Cianobactérias/enzimologia , Substâncias Redutoras/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Catálise , Cisteína/metabolismo , Ditiotreitol/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Mercaptoetanol/farmacologia , Fosfinas/farmacologia , Fosfato de Piridoxal/farmacologia , Substâncias Redutoras/química , Análise Espectral , Compostos de Sulfidrila/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA