Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1384420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756232

RESUMO

Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.


Assuntos
Exossomos , MicroRNAs , Células-Tronco , Receptores Toll-Like , Exossomos/metabolismo , Receptores Toll-Like/metabolismo , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Células-Tronco/metabolismo , Transdução de Sinais , Imunidade Inata , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Imunidade Adaptativa
2.
Stem Cell Rev Rep ; 19(7): 2166-2191, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495772

RESUMO

Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.

3.
Virus Genes ; 59(4): 499-514, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37140777

RESUMO

Although comprehensive vaccination is the cornerstone of public health programs to control hepatitis B virus (HBV) infections, 5% of people who receive the existing vaccine do not develop proper immunity against HBV. To overcome this challenge, researchers have tried using various protein fragments encoded by the virus genome to achieve better immunization rates. An important antigenic component of HBsAg called the preS2/S or M protein has also received much attention in this area. The gene sequences of preS2/S and Core18-27 peptide were extracted from the GenBank (NCBI). Final gene synthesis was conducted with pET28. Groups of BALB/c mice were immunized with 10 µg/ml of recombinant proteins and 1 µg/ml CPG7909 adjuvant. Serum levels of IF-γ, TNF-α, IL-2, IL-4, and IL-10 were measured by ELISA assay method on spleen cell cultures on day 45, and IgG1, IgG2a, and total IgG titers obtained from mice serum were quantified on days 14 and 45. Statistical analysis did not show any significant difference between the groups regarding IF-γ level. There were, however, significant differences in terms of IL-2 and IL-4 levels between the groups receiving preS2/S-C18-27 with and without adjuvant and the groups receiving both preS2/S and preS2/S-C18-27 (Plus Recomb-Plus Recomb: the group of mice that received both preS2/S and preS2/S-C18-27 simultaneously). The strongest total antibody production was induced by immunization with both recombinant proteins without CPG adjuvant. The groups that received both preS2/S and preS2/S-C18-27, whether with or without adjuvant, were significantly different from those that received the conventional vaccine considering most abundant interleukins. This difference suggested that higher levels of efficacy can be achieved by the use of multiple virus antigen fragments rather than using a single fragment.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Animais , Vírus da Hepatite B/genética , Interleucina-2 , Interleucina-4 , Vacinas contra Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Proteínas Recombinantes/genética , Hepatite B/prevenção & controle , Imunidade
4.
Curr Microbiol ; 80(7): 223, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222840

RESUMO

The novel human coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which results in the coronavirus disease 2019 (COVID-19), has caused a serious threat to global public health. Therefore, many studies are performed on the causes and prevalence of this disease and the possible co-occurrence of the infection with other viral and bacterial pathogens is investigated. Respiratory infections predispose patients to co-infections and these lead to increased disease severity and mortality. Numerous types of antibiotics have been employed for the prevention and treatment of bacterial co-infection and secondary bacterial infections in patients with a SARS-CoV-2 infection. Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co-infection rather than virus itself. Therefore, bacterial co-infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID-19. In this review, we will summarize the bacterial co-infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID-19.


Assuntos
COVID-19 , Coinfecção , Infecções Respiratórias , Humanos , SARS-CoV-2 , Coinfecção/epidemiologia , Bactérias/genética , Antibacterianos/uso terapêutico
5.
Int Microbiol ; 26(4): 939-949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36991248

RESUMO

Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed. The designed SEB gene construct can be a new model vaccine for breast cancer because it effectively induces necrosis and produces specific immune responses. This structure does not hurt normal cells and is a safer treatment than chemotherapy and radiation therapy. Its slow and long-term release gently stimulates the immune system and cellular memory. It could be applied as a new model for inducing apoptosis and antitumor immunity to treat cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Camundongos , Animais , Vacinas de DNA/genética , Modelos Animais de Doenças , Vacinas Anticâncer/genética , Interleucina-4 , Necrose , Camundongos Endogâmicos BALB C
6.
Microb Pathog ; 174: 105888, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402345

RESUMO

The emergence of Coronavirus disease 2019 (Covid-19) is a global problem nowadays, causing health difficulty with increasing mortality rates, which doesn't have a verified treatment. SARS-CoV-2 infection has various pathological and epidemiological characteristics, one of them is increased amounts of cytokine production, which in order activate an abnormal unrestricted response called "cytokine storm". This event contributes to severe acute respiratory distress syndrome (ARDS), which results in respiratory failure and pneumonia and is the great cause of death associated with Covid-19. Endotoxemia and the release of bacterial lipopolysaccharides (endotoxins) from the lumen into the bloodstream enhance proinflammatory cytokines. SARS-CoV-2 can straightly interplay with endotoxins via its S protein, leading to the extremely elevating release of cytokines and consequently increase the harshness of Covid-19. In this review, we will discuss the possible role of viral-bacterial interaction that occurs through the transfer of bacterial products such as lipopolysaccharide (LPS) from the intestine into the bloodstream, exacerbating the severity of Covid-19 and cytokine storms.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Síndrome da Liberação de Citocina , Endotoxinas
7.
Iran J Pathol ; 17(4): 448-460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532644

RESUMO

Background & Objective: The vaccine available to prevent Hepatitis B virus disease is ineffective in 5% of people due to the use of HBsAg as a weak immunogenic factor. In the present study, PreS2/S fused to C18-27 peptide fragment as an effective antigen and is proposed as a promising vaccine candidate compared with the conventional vaccine prescribed in the vaccination program. Methods: After the synthesis of PreS2/S genes and C18-27 peptide fragment in pET28a, the recombinant protein was confirmed by Western blotting. The efficacy of the PreS2/S-C18-27 protein was compared with the conventional vaccine injected into five groups of rats. Finally, the cytokine level of IF-r, IL-2, IL-4, IL-10, TNF-a, IgG1, and IgG2a were measured using the ELISA method. Results: This study showed no significant difference between the recombinant vaccine group and PBS control group in the IF-r test, but there was a significant difference between groups testing IL-2 and IL-10. In addition, the group receiving the recombinant vaccine with CPG adjuvant at a dilution of 1/10 in the IgG total test on days 14 and 45 after the first injection showed a significant difference in comparison with other groups. Conclusion: This study showed no statistically significant difference between the recombinant protein vaccine group and the conventional vaccine group. The Th1- mediated immune responses obtained from recombinant proteins with and without CPG performed better than conventional vaccines, possibly due to the functional deficiency of the available vaccines.

8.
Iran J Pathol ; 17(3): 303-313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247511

RESUMO

Background & Objective: Despite the vaccination with the BCG vaccine, tuberculosis (TB) remains one of the major health problems in the world. The aim of this study was to evaluate our newly designed vaccine using IL-22 as an adjuvant in comparison with the common BCG vaccine. Methods: The gene constructs were cloned into the expression vector of pET28a and then into the recombinant vector of PET28a - HSPX, and PPE44 was transformed into Escherichia coli BL21 (DE3). Finally, the immunogenicity of recombinant proteins with and without BCG and IL-22 in BALB/c mice was investigated. Results: The key cytokines INF-γ and TNF-α were elevated more greatly in BCG immunized group than in PHF immunized group. Immunization with PHF showed a significant increase in IL-4 levels versus the BCG group. Adding IL-22 to the vaccine formulations indicated a tiny increase in IL-4 levels compared to their related vaccine groups.Specific total IgG1 in the experimental groups showed an increase in comparison with control groups, but in the vaccinated groups, no significant differences were observed, and the presence of IL-22 in the vaccine formulations indicated a slight decrease compared with the related mere vaccine groups. Results of specific total IgG2a in the experimental groups revealed that only in the PHF group formulated with IL-22 a significant increase occurs compared with all other experimental groups. Conclusion: It seems that BCG, as the only licensed vaccine for TB infection, could be more potent than a recombinant vaccine in the induction of cellular and humoral immune responses.

9.
Curr Microbiol ; 79(9): 260, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852636

RESUMO

Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen causing long-term infection in humans that mainly attacks macrophages and can escape from the immune system with the various mechanisms. The only FDA-approved vaccine against M. tuberculosis (MTB) is Mycobacterium bovis bacillus Calmette-Guérin (BCG). The protection of this vaccine typically lasts 10-15 years. Due to the increasing number of people becoming ill with MTB each year worldwide, the need to develop a new effective treatment against the disease has been increased. During the past two decades, the research budget for TB vaccine has quadrupled to over half a billion dollars. Most of these research projects were based on amplifying and stimulating the response of T-cells and developing the subunit vaccines. Additionally, these studies have demonstrated that secretory and immunogenic proteins of MTB play a key role in the pathogenesis of the bacteria. Therefore, these proteins were used to develop the new subunit vaccines. In this review, based on the use of these proteins in the successful new subunit vaccines, the PPE44, HSPX, CFP-10 and ESAT-6 antigens were selected and the role of these antigens in designing and developing new subunit vaccines against TB and for the prevention of TB were investigated.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Humanos , Tuberculose/metabolismo , Tuberculose/prevenção & controle , Vacinas de Subunidades Antigênicas
10.
Probiotics Antimicrob Proteins ; 14(2): 224-237, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031968

RESUMO

Probiotics are living microorganisms that have favorable effects on human and animal health. The most usual types of microorganisms recruited as probiotics are lactic acid bacteria (LAB) and bifidobacteria. To date, numerous utilizations of probiotics have been reported. In this paper, it is suggested that probiotic bacteria can be recruited to remove and degrade different types of toxins such as mycotoxins and algal toxins that damage host tissues and the immune system causing local and systemic infections. These microorganisms can remove toxins by disrupting, changing the permeability of the plasma membrane, producing metabolites, inhibiting the protein translation, hindering the binding to GTP binding proteins to GM1 receptors, or by preventing the interaction between toxins and adhesions. Here, we intend to review the mechanisms that probiotic bacteria use to eliminate and degrade microbial toxins.


Assuntos
Micotoxinas , Probióticos , Animais , Bactérias/metabolismo , Bifidobacterium , Sistema Imunitário/microbiologia , Micotoxinas/metabolismo
11.
Curr Pharm Biotechnol ; 23(6): 803-817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34825639

RESUMO

INTRODUCTION: Hepatitis B and C viruses are one of the leading causes of health problems in the world and early diagnosis and treatment of them are very important. Thereby, this study aimed to evaluate the validity and reliability of usable diagnostic tests for the detection of hepatitis B and C viruses in the clinical setting and to compare them with each other. MATERIALS AND METHODS: In this review article, we have searched major online databases, including PubMed and EMBASE. 42 retrieved articles were published between January 2000 and January 2020, which are summarized in this review. RESULTS: Immunoassay approaches are general techniques for the identification of pathogenic agents, among which ELISA is the gold standard for the detection of HBsAg. While serological techniques are not conclusive, molecular assays are really important because of the high sensitivity to detect chronic hepatitis B without HBeAg, in which viral loads are very low. Biosensors have more elevated selectivity and sensitivity and faster responses compared to other methods. CONCLUSION: This study suggests that all of the molecular, serological, and biotechnological assays have advantages and disadvantages for diagnosing hepatitis B and C viruses which are dependent on the condition, so we should choose one of them in regards to the time, cost, and laboratory equipment along with the clinical symptoms.


Assuntos
Vírus da Hepatite B , Hepatite B , Hepatite B/diagnóstico , Antígenos de Superfície da Hepatite B/análise , Vírus da Hepatite B/genética , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Microb Pathog ; 160: 105188, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34530074

RESUMO

Millions of symbiotic and pathogenic microorganisms known as microbiota colonize the host body. The microbiome plays an important role in human health and colonizes hundreds of different species of multicellular organisms so that they are introduced as the metaorganisms. Changes in the microbial population of the gut microbiome may cause resistance to pathogenic bacteria-induced infection. Understanding the principles of Host-Microbiota Interactions (HMIs) is important because it clarifies our insight towards the mechanisms of infections established in the host. Interactions between the host and the microbiota help answer the question of how a microorganism can contribute to the health or disease of the host. Microbiota can increase host resistance to colonization of pathogenic species. Studying the HMIs network can in several ways delineate the pathogenic mechanisms of pathogens and thereby help to increase useful and novel therapeutic pathways. For example, the potentially unique microbial effects that target the distinct host or interfere with the endogenous host interactions can be identified. In addition, the way mutations in essential proteins in the host and/or in the microbes can influence the interactions between them may be determined. Furthermore, HMIs help in identifying host cell regulatory modules.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Interações entre Hospedeiro e Microrganismos , Humanos , Simbiose
13.
Eur J Pharmacol ; 899: 174057, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753109

RESUMO

Immunotoxins are protein-based drugs consist of a target-specific binding domain and a cytotoxic domain to eliminate target cells. Such compounds are potentially therapeutic to combat diseases such as cancer. Generally, the B-subunit of Shiga toxin (STXB) receptor, globotriaosylceramide (Gb3), is expressed in high amounts on a number of human tumors cancer cells. In this study, we evaluated a new antitumor candidate called DT389-STXB chimeric protein, which genetically fused the DT to B-subunit of Shiga-like toxin (STXB). First a chimeric protein, encoding DT389-STXB was synthesized. The optimized chimeric protein expressed in E.coli BL21 (DE3) and confirmed by anti-His Western blot analysis. T47D, SKBR3, 4T1 and MCF7 cell lines were treated separately with purified DT389-STXB recombinant protein and functional activity of DT389-STXB was analyzed by the cell enzyme-linked immunosorbentassay (ELISA), MTT, ICC, Western blot and apoptosis tests. The results indicated that the recombinant DT389-STXB fusion protein with a molecular weight of 53 kDa was successfully expressed in E.coli BL21 (DE3) and the anti-His western-blot was used to confirm the presence of the protein. The DT389-STXB fusion protein attached to T47D, SKBR3 and 4T1 cell lines with the proper affinity and induced dose-dependent cytotoxicity against GB3-expressing cancer cells in vitro. Our results showed that DT389-STXB fusion protein may be a promising candidate for antitumor therapy agent against breast cancer; however, further studies are required to explore its efficacy in vivo for therapeutic applications.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Toxina Diftérica/farmacologia , Toxinas Shiga/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Camundongos , Proteínas Recombinantes de Fusão/farmacologia , Triexosilceramidas/metabolismo
14.
Biomed Pharmacother ; 129: 110442, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593129

RESUMO

Exosomes are biological nanoparticles (30-150 nm) secreted in the extracellular area from all of cells, that mediate intercellular message. Exosomes act as the carriers for numerous proteins, DNAs, RNAs and cell-signaling molecules. Therefore, exosomes secreted by the tumor cells are useful for diagnostic purposes because of their persistent presence in the blood and their provision of genetic cargo similar to those in tumor. Due to the risks of aggressive activity and ambiguity of biological activity in other tissues, the use of exosomes in drug delivery and imaging has been limited. However, their high loading, stability and longer circulation time, excellent targeting, high cell penetration performance, and optimal biodegradability have made them potential agents in targeted cancer treatment. Therefore, in addition to examining methods for isolating and loading exosomes, this paper discusses the applications of exosomes in biological measurement, imaging, and therapeutic activities. Also, this review describes the challenges of using exosomes compared to conventional methods and shows that it is very useful to use them due to less aggressive activities. Finally, this review attempts to provide an appropriate incentive by showing the performance of exosomes in cancer therapy through targeted drug delivery, gene therapy, imaging and diagnosis.


Assuntos
Antineoplásicos/administração & dosagem , Meios de Contraste/administração & dosagem , Portadores de Fármacos , Exossomos/transplante , Técnicas de Transferência de Genes , Terapia Genética , Nanopartículas , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Composição de Medicamentos , Humanos , Nanomedicina , Neoplasias/genética
15.
J Steroid Biochem Mol Biol ; 200: 105651, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32147458

RESUMO

Target-specific transport of therapeutic agents holds promise to increase the efficacy of cancer treatment by decreasing injury to normal tissues and post treatment problems. HER2 is a tumor cell surface marker that is expressed in 25-30 % of breast cancer patients. The significant role of HER2 in cancer development and its biological feature makes it a highly appealing goal for the therapeutic treatment of cancer targeted therapy using HER2 monoclonal antibody. This approach is currently used as a special treatment against breast cancer in some research. In the present study, HER2 monoclonal antibody (mAb), (Herceptin) fused to PE38 by recombinant DNA technology and a new recombinant IT was developed. The scFv(Herceptin)-PE-STXA and scFv(Herceptin)-PE fusions cloned in pET28a and recombinant protein expression was carried out and then the proteins were purified. MCF-7 and SKBR-3 cells were used as HER2-negative and HER2-positive breast cancer cells, respectively. The cytotoxicity of its evaluated using MTT assay. The cell ELISA was used to determine the binding ability of immunotoxins (ITs) to the cell receptor and internalization and apoptosis were also assessed. The results revealed that cell cytotoxicity occurred in SKBR-3 cells in a dose-dependent manner but not in MCF-7 cells. It is possible that this ITs can attach to HER2-positive breast cancer cells and then, internalize and eradicate cancer cells by apoptosis. Here, we concluded that the recombinant ITs have therapeutic potential against HER2-positive breast cancer.


Assuntos
ADP Ribose Transferases , Antineoplásicos Imunológicos/farmacologia , Toxinas Bacterianas , Neoplasias da Mama/tratamento farmacológico , Exotoxinas , Imunotoxinas/farmacologia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Trastuzumab/farmacologia , Fatores de Virulência , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Exotoxina A de Pseudomonas aeruginosa
16.
Iran J Pathol ; 14(4): 305-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754360

RESUMO

BACKGROUND & OBJECTIVE: A main contest in chemotherapy is to obtain regulator above the biodistribution of cytotoxic drugs. The utmost promising strategy comprises of drugs coupled with a tumor-targeting bearer that results in wide cytotoxic activity and particular delivery. The B-subunit of Shiga toxin (STxB) is nontoxic and possesses low immunogenicity that exactly binds to the globotriaosylceramide (Gb3/CD77). Gb3/CD77 extremely expresses on a number of human tumors such as pancreatic, colon, and breast cancer and acts as a functional receptor for Shiga toxin (STx). Then, this toxin can be applied to target Gb3-positive human tumors. In this study, we evaluated DT390-STXB chimeric protein as a new anti-tumor candidate via genetically fusing the DT390 fragment of DT538 (Native diphtheria toxin) to STxB. METHODS: This study intended to investigate the DT390- STxB fusion protein structure in silico. Considering the Escherichia coli codon usage, the genomic construct was designed. The properties and the structure of the protein were determined by an in silico technique. The mRNA structure and the physicochemical characteristics, construction, and the stability of the designed chimeric protein were analyzed using computational and bioinformatics tools and servers. Hence, the GOR4 and I-TASSER online web servers were used to predict the secondary and tertiary structures of the designed protein. RESULTS: The results demonstrated that codon adaptation index (CAI) of dt390-stxB chimeric gene raised from 0.6 in the wild type to 0.9 in the chimeric optimized gene. The mfold data revealed that the dt390-stxB mRNA was completely stable to be translated effectively in the novel host. The normal activity of the fusion protein determined by considering the secondary and tertiary structure of each construct. Energy calculation data indicated that the thermodynamic ensemble for mRNA structure was -427.40 kJ/mol. The stability index (SI) of DT390-STxB was 36.95, which is quite appropriate to preserve the stability of the construct. Ultimately, the DT390-STxB was classified as a steady fusion protein according to the Ramachandran plot. CONCLUSION: Our results showed that DT390-STXB was a stable chimeric protein and it can be recruited as a candidate of novel anti-tumor agents for the development of breast cancer treatment.

17.
Heliyon ; 5(10): e02652, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31687504

RESUMO

Peptides are secreted by different cell types and are trendy therapeutic agents that have attracted attention for the treatment of several diseases such as infections. Antimicrobial peptides exert various mechanisms such as changing cell membrane permeability which leads to inhibition or death of bacterial cells. mesenchymal stem cells (MSCs) are key to produce antimicrobial peptides and to inhibit the growth of pathogens. These cells have been shown to be capable of producing antimicrobial peptides upon exposure to different bacteria. As a result, antimicrobial peptides can be considered as novel agents for the treatment of infectious diseases. The purpose of this review was to investigate the targets and mechanisms of antimicrobial peptides secreted by MSCs.

18.
GMS Hyg Infect Control ; 14: Doc14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993060

RESUMO

Urinary tract infections (UTIs) and genital tract infections (GTIs) are both very common infectious diseases. Thus, accuracy and rapidity in recognition and treatment of sexually transmitted urogenital tract infections (ST-UGTIs) is a major concern in global public health systems. The application of reliable, accurate diagnostic tools is the key to definite detection, identification and treatment. This literature review focused on different characteristics of UGTIs in patients and the importance of diagnostic methodologies. The articles published and indexed from 1980 through October 2018 in the databases of PubMed and MEDLINE, as well as the Google Scholar web search engine, were collected and studied. MeSH keywords of "Sexual intercourse", "Urinary Tract Infections", "Genital Tract Infections" and "Toll-Like Receptors" were used for searching articles. Then, the proper articles (original and review articles) were subjected to a very rigorous selection process. The clinical symptoms and signs or asymptomatic properties of UTIs and GTIs are similar and often overlap. In many cases, the lack of suitable diagnostic techniques leads to misdiagnosed/undignosed GTIs and overdiagnosed UTIs. The outcome of poor diagnostics is failure of definite identification and treatment. The application of advanced techniques comprising PCR, microarray and next-generation sequencing promises to be more effective, together with the use of the microbial pattern of the individual's UGT to provide reliable detection, identification and definite treatment. This will be an option in the near future.

19.
Int J Nanomedicine ; 14: 257-270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643405

RESUMO

BACKGROUND: Recently, nanomaterials have moved into biological and medicinal implementations like cancer therapy. Therefore, before clinical trials, their binding to plasma proteins like human serum albumin (HSA) and their cytotoxic effects against normal and cancer cell lines should be addressed. METHODS: Herein, the interaction of magnesium oxide nanoparticles (MgO NPs) with HSA was studied by means of fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and docking studies. Afterwards, the cytotoxic impacts of MgO NPs on human leukemia cell line (K562) and peripheral blood mononucleated cells (PBMCs) were evaluated by MTT and flow cytometry assays to quantify reactive oxygen species (ROS) generation and apoptosis. RESULTS: It was demonstrated that MgO NPs spontaneously form a static complex with HSA molecules through hydrophobic interactions. Docking study based on the size of NPs demonstrated that different linkages can be established between MgO NPs and HSA. The CD investigation explored that MgO NPs did not alter the secondary structure of HSA. Cellular studies revealed that MgO NPs induced cytotoxicity against K562 cell lines, whereas no adverse effects were detected on PBMCs up to optimum applied concentration of MgO NPs. It was exhibited that ROS production mediated by IC50 concentrations of MgO NPs caused apoptosis-associated cell death. The pre-incubation of K562 with ROS scavenger (curcumin) inhibited the impact of MgO NPs -based apoptosis on cell fate, revealing the upstream effect of ROS in our system. CONCLUSION: In summary, MgO NPs may exhibit strong plasma distribution and mediate apoptosis by ROS induction in the cancer cell lines. These data demonstrate a safe aspect of MgO NPs on the proteins and normal cells and their application as a distinctive therapeutic approach in the cancer treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Óxido de Magnésio/química , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Albumina Sérica Humana/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Simulação de Acoplamento Molecular , Conformação Proteica , Albumina Sérica Humana/química , Células Tumorais Cultivadas
20.
Biomed Pharmacother ; 110: 190-196, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30471512

RESUMO

BACKGROUND: TGFαL3-SEB chimeric protein is a synthetic protein, which is produced by combining the third loop (L3) of transforming growth factor-α (TGF-α) with staphylococcal enterotoxin type B. To the best of our knowledge, anti-cancer activity of this chimeric protein against colon cancer that overexpresses epidermal growth factor receptor (EGFR) has not yet been studied. Thus, in the present study, the anti-tumor effects of TGFαL3-SEB chimeric protein on HT-29 colon cancer cells were evaluated. MATERIALS AND METHODS: The TGFαL3-SEB chimeric protein was previously designed and cloned in Escherichia coli (E. coli) [1,2]. The level of expression and the purity of this novel protein were examined for further analysis. For this purpose, the cells were treated with different concentrations (25, 50 and 75 µg/ml) of TGFαL3-SEB and then the proliferation was detected using the MTT assay. The apoptosis-inducing potential of TGFαL3-SEB in HT-29 and HEK-293 cells was evaluated by flow cytometry using Annexin V/PI double staining method; in addition, bax/bcl2 mRNA ratio, caspase-3 and caspase-9 activity were also assessed. RESULTS: In the present study, TGFαL3-SEB chimeric protein was produced in E. coli. After effective purification, its growth inhibitory effect was evaluated. Our results indicated that the incubation of HT-29 colon cancer cell with 25, 50 and 75 µg/ml of TGFαL3-SEB for 24 h leads to significant reduction of proliferation in a dose-dependent manner (P < 0.05). Further analysis indicated that exposure of EGFR expressing HT-29 cells to TGFαL3-SEB leads to significant increase of the caspase-3 and caspase-9 activity in a concentration-dependent manner (P < 0.05). Bax/bcl-2 ratio also confirmed that TGFαL3-SEB has the pro-apoptotic effect. Flow cytometry analysis of TGFαL3-SEB treated cells showed that in addition to apoptotic cells, necrotic cells were also increased significantly at the concentration of 25, 50 and 75 µg/ml (P < 0.05). CONCLUSION: In conclusion, our results demonstrated that TGFαL3-SEB chimeric protein induced cell death through both mechanisms of apoptosis and necrosis in HT-29 colon cancer cells. This paper has highlighted that TGFαL3-SEB has the potential to target EGFR expressing cancer cell.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo , Enterotoxinas/uso terapêutico , Inibidores do Crescimento/uso terapêutico , Fator de Crescimento Transformador alfa/uso terapêutico , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Enterotoxinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Inibidores do Crescimento/farmacologia , Células HEK293 , Células HT29 , Humanos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Fator de Crescimento Transformador alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA