Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Cancer Immunol Immunother ; 73(10): 206, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105803

RESUMO

BACKGROUND: Human papillomavirus (HPV) infection has become an important etiological driver of oropharyngeal squamous cell carcinoma (OPSCC), leading to unique tumor characteristics. However, the interplay between HPV-associated tumor cells and tumor microenvironment (TME) remains an enigma. METHODS: We performed a single-cell RNA-sequencing (scRNA-seq) on HPV-positive (HPV+) and HPV-negative (HPV‒) OPSCC tumors, each for three samples, and one normal tonsil tissue. Ex vivo validation assays including immunofluorescence staining, cell line co-culture, and flow cytometry analysis were used to test specific subtypes of HPV+ tumor cells and their communications with T cells. RESULTS: Through a comprehensive single-cell transcriptome analysis, we uncover the distinct transcriptional signatures between HPV+ and HPV‒ OPSCC. Specifically, HPV+ OPSCC tumor cells manifest an enhanced interferon response and elevated expression of the major histocompatibility complex II (MHC-II), potentially bolstering tumor recognition and immune response. Furthermore, we identify a CXCL13+CD4+ T cell subset that exhibits dual features of both follicular and pro-inflammatory helper T cells. Noteworthily, HPV+ OPSCC tumor cells embrace extensive intercellular communications with CXCL13+CD4+ T cells. Interaction with HPV+ OPSCC tumor cells amplifies CXCL13 and IFNγ release in CD4+T cells, fostering a pro-inflammatory TME. Additionally, HPV+ tumor cells expressing high MHC-II and CXCL13+CD4+ T cell prevalence are indicative of favorable overall survival rates in OPSCC patients. CONCLUSIONS: Together, our study underscores a synergistic inflammatory immune response orchestrated by highly immunogenic tumor cells and CXCL13+CD4+ T cells in HPV+ OPSCC, offering useful insights into strategy development for patient stratification and effective immunotherapy in OPSCC.


Assuntos
Linfócitos T CD4-Positivos , Quimiocina CXCL13 , Imunoterapia , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Microambiente Tumoral , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunoterapia/métodos , Ativação Linfocitária , Neoplasias Orofaríngeas/imunologia , Neoplasias Orofaríngeas/virologia , Neoplasias Orofaríngeas/terapia , Papillomaviridae , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/complicações
2.
Adv Sci (Weinh) ; : e2403161, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049720

RESUMO

Nasopharyngeal carcinoma (NPC), a squamous cell carcinoma originating in the nasopharynx, is a leading malignancy in south China and other south and east Asia areas. It is frequently associated with Epstein-Barr virus (EBV) infection, while there are also some NPC patients without EBV infection. Here, it is shown that the EBV+ (EBV positive) and EBV- (EBV negative) NPCs contain both shared and distinct genetic abnormalities, among the latter are increased mutations in TP53. To investigate the functional roles of NPC-associated genetic alterations, primary, orthotopic, and genetically defined NPC models were developed in mice, a key tool missed in the field. These models, initiated with gene-edited organoids of normal nasopharyngeal epithelium, faithfully recapitulated the pathological features of human disease. With these models, it is found that Trp53 and Cdkn2a deficiency are crucial for NPC initiation and progression. And latent membrane protein1 (LMP1), an EBV-coding oncoprotein, significantly promoted the distal metastasis. Further, loss of TGFBR2, which is frequently disrupted both in EBV- and EBV+ NPCs, dramatically accelerated the progression and lung metastasis of NPC probably by altering tumor microenvironment. Taken together, this work establishes a platform to dissect the genetic mechanisms underlying NPC pathogenesis and might be of value for future translational studies.

3.
Adv Sci (Weinh) ; : e2403019, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054639

RESUMO

The main challenge for immune checkpoint blockade (ICB) therapy lies in immunosuppressive tumor microenvironment (TME). Repolarizing M2-like tumor-associated macrophages (TAMs) into inflammatory M1 phenotype is a promising strategy for cancer immunotherapy. Here, this study shows that the tumor suppressive protein SHISA3 regulates the antitumor functions of TAMs. Local delivery of mRNA encoding Shisa3 enables cancer immunotherapy by reprogramming TAMs toward an antitumoral phenotype, thus enhancing the efficacy of programmed cell death 1 (PD-1) antibody. Enforced expression of Shisa3 in TAMs increases their phagocytosis and antigen presentation abilities and promotes CD8+ T cell-mediated antitumor immunity. The expression of SHISA3 is induced by damage/pathogen-associated molecular patterns (DAMPs/PAMPs) in macrophages via nuclear factor-κB (NF-κB) transcription factors. Reciprocally, SHISA3 forms a complex with heat shock protein family A member 8 (HSPA8) to activate NF-κB signaling thus maintaining M1 polarization of macrophages. Knockout Shisa3 largely abolishes the antitumor efficacy of combination immunotherapy with Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) and PD-1 antibody. It further found that higher expression of SHISA3 in antitumoral TAMs is associated with better overall survival in lung cancer patients. Taken together, the findings describe the role of SHISA3 in reprogramming TAMs that ameliorate cancer immunotherapy.

4.
J Genet Genomics ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885836

RESUMO

Phospholipase D (PLD) lipid-signaling enzyme superfamily has been widely implicated in various human malignancies, but its role and underlying mechanism remain unclear in nasopharyngeal carcinoma (NPC). Here, we analyze the expressions of 6 PLD family members between 87 NPC and 10 control samples through transcriptome analysis. Our findings reveal a notable upregulation of PLD1 in both NPC tumors and cell lines, correlating with worse disease-free and overall survival in NPC patients. Functional assays further elucidate PLD1's oncogenic role, demonstrating its pivotal promotion of critical tumorigenic processes such as cell proliferation and migration in vitro, as well as tumor growth in vivo. Notably, our study uncovers a positive feedback loop between PLD1 and the NF-κB signaling pathway to render NPC progression. Specifically, PLD1 enhances NF-κB activity by facilitating the phosphorylation and nuclear translocation of RELA (p65), which in turn binds to the promoter of PLD1, augmenting its expression. Moreover, RELA overexpression significantly rescues the inhibitory effects in PLD1-depleted NPC cells. Importantly, the application of the PLD1 inhibitor, VU0155069, significantly inhibits NPC tumorigenesis in a patient-derived xenograft model. Together, our findings identify PLD1/NF-κB signaling as a positive feedback loop with promising therapeutic and prognostic potential in NPC.

5.
J Med Virol ; 96(4): e29577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572977

RESUMO

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Leucócitos Mononucleares , NF-kappa B , SARS-CoV-2 , Vacinas de Produtos Inativados , Imunidade , Análise de Sequência de RNA , Anticorpos Antivirais
6.
Cell Rep ; 43(4): 114094, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613784

RESUMO

The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for ß-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.


Assuntos
Camundongos Endogâmicos C57BL , Esqualeno Mono-Oxigenase , Animais , Esqualeno Mono-Oxigenase/metabolismo , Camundongos , Colesterol/metabolismo , Colesterol/biossíntese , Colesterol/análogos & derivados , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Inata/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral
7.
Cell Death Dis ; 15(1): 15, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182569

RESUMO

Adenocarcinoma of the esophagogastric junction (AEG) is a type of tumor that arises at the anatomical junction of the esophagus and stomach. Although AEG is commonly classified as a subtype of gastric adenocarcinoma (GAC), the tumor microenvironment (TME) of AEG remains poorly understood. To address this issue, we conducted single-cell RNA sequencing (scRNA-seq) on tumor and adjacent normal tissues from four AEG patients and performed integrated analysis with publicly available GAC single-cell datasets. Our study for the first time comprehensively deciphered the TME landscape of AEG, where heterogeneous AEG malignant cells were identified with diverse biological functions and intrinsic malignant nature. We also depicted transcriptional signatures and T cell receptor (TCR) repertoires for T cell subclusters, revealing enhanced exhaustion and reduced clone expansion along the developmental trajectory of tumor-infiltrating T cells within AEG. Notably, we observed prominent enrichment of tumorigenic cancer-associated fibroblasts (CAFs) in the AEG TME compared to GAC. These CAFs played a critical regulatory role in the intercellular communication network with other cell types in the AEG TME. Furthermore, we identified that the accumulation of CAFs in AEG might be induced by malignant cells through FGF-FGFR axes. Our findings provide a comprehensive depiction of the AEG TME, which underlies potential therapeutic targets for AEG patient treatment.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Neoplasias Gástricas/genética , Junção Esofagogástrica , Análise de Célula Única , Microambiente Tumoral
8.
Nat Commun ; 15(1): 811, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280871

RESUMO

Eosinophils are a group of granulocytes well known for their capacity to protect the host from parasites and regulate immune function. Diverse biological roles for eosinophils have been increasingly identified, but the developmental pattern and regulation of the eosinophil lineage remain largely unknown. Herein, we utilize the zebrafish model to analyze eosinophilic cell differentiation, distribution, and regulation. By identifying eslec as an eosinophil lineage-specific marker, we establish a Tg(eslec:eGFP) reporter line, which specifically labeled cells of the eosinophil lineage from early life through adulthood. Spatial-temporal analysis of eslec+ cells demonstrates their organ distribution from larval stage to adulthood. By single-cell RNA-Seq analysis, we decipher the eosinophil lineage cells from lineage-committed progenitors to mature eosinophils. Through further genetic analysis, we demonstrate the role of Cebp1 in balancing neutrophil and eosinophil lineages, and a Cebp1-Cebpß transcriptional axis that regulates the commitment and differentiation of the eosinophil lineage. Cross-species functional comparisons reveals that zebrafish Cebp1 is the functional orthologue of human C/EBPεP27 in suppressing eosinophilopoiesis. Our study characterizes eosinophil development in multiple dimensions including spatial-temporal patterns, expression profiles, and genetic regulators, providing for a better understanding of eosinophilopoiesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Eosinófilos , Peixe-Zebra , Animais , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Eosinófilos/metabolismo , Neutrófilos/metabolismo , Peixe-Zebra/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
9.
Adv Sci (Weinh) ; 10(36): e2303913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949673

RESUMO

Extranodal natural killer/T-cell lymphoma (NKTCL) is an aggressive type of lymphoma associated with Epstein-Barr virus (EBV) and characterized by heterogeneous tumor behaviors. To better understand the origins of the heterogeneity, this study utilizes single-cell RNA sequencing (scRNA-seq) analysis to profile the tumor microenvironment (TME) of NKTCL at the single-cell level. Together with in vitro and in vivo models, the study identifies a subset of LMP1+ malignant NK cells contributing to the tumorigenesis and development of heterogeneous malignant cells in NKTCL. Furthermore, malignant NK cells interact with various immunocytes via chemokines and their receptors, secrete substantial DPP4 that impairs the chemotaxis of immunocytes and regulates their infiltration. They also exhibit an immunosuppressive effect on T cells, which is further boosted by LMP1. Moreover, high transcription of EBV-encoded genes and low infiltration of tumor-associated macrophages (TAMs) are favorable prognostic indicators for NKTCL in multiple patient cohorts. This study for the first time deciphers the heterogeneous composition of NKTCL TME at single-cell resolution, highlighting the crucial role of malignant NK cells with EBV-encoded LMP1 in reshaping the cellular landscape and fostering an immunosuppressive microenvironment. These findings provide insights into understanding the pathogenic mechanisms of NKTCL and developing novel therapeutic strategies against NKTCL.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Extranodal de Células T-NK , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/patologia , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/patologia , Prognóstico , Análise de Célula Única , Microambiente Tumoral
10.
J Am Soc Nephrol ; 34(11): 1900-1913, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787447

RESUMO

SIGNIFICANCE STATEMENT: Genome-wide association studies have identified nearly 20 IgA nephropathy susceptibility loci. However, most nonsynonymous coding variants, particularly ones that occur rarely or at a low frequency, have not been well investigated. The authors performed a chip-based association study of IgA nephropathy in 8529 patients with the disorder and 23,224 controls. They identified a rare variant in the gene encoding vascular endothelial growth factor A (VEGFA) that was significantly associated with a two-fold increased risk of IgA nephropathy, which was further confirmed by sequencing analysis. They also identified a novel common variant in PKD1L3 that was significantly associated with lower haptoglobin protein levels. This study, which was well-powered to detect low-frequency variants with moderate to large effect sizes, helps expand our understanding of the genetic basis of IgA nephropathy susceptibility. BACKGROUND: Genome-wide association studies have identified nearly 20 susceptibility loci for IgA nephropathy. However, most nonsynonymous coding variants, particularly those occurring rarely or at a low frequency, have not been well investigated. METHODS: We performed a three-stage exome chip-based association study of coding variants in 8529 patients with IgA nephropathy and 23,224 controls, all of Han Chinese ancestry. Sequencing analysis was conducted to investigate rare coding variants that were not covered by the exome chip. We used molecular dynamic simulation to characterize the effects of mutations of VEGFA on the protein's structure and function. We also explored the relationship between the identified variants and the risk of disease progression. RESULTS: We discovered a novel rare nonsynonymous risk variant in VEGFA (odds ratio, 1.97; 95% confidence interval [95% CI], 1.61 to 2.41; P = 3.61×10 -11 ). Further sequencing of VEGFA revealed twice as many carriers of other rare variants in 2148 cases compared with 2732 controls. We also identified a common nonsynonymous risk variant in PKD1L3 (odds ratio, 1.16; 95% CI, 1.11 to 1.21; P = 1.43×10 -11 ), which was associated with lower haptoglobin protein levels. The rare VEGFA mutation could cause a conformational change and increase the binding affinity of VEGFA to its receptors. Furthermore, this variant was associated with the increased risk of kidney disease progression in IgA nephropathy (hazard ratio, 2.99; 95% CI, 1.09 to 8.21; P = 0.03). CONCLUSIONS: Our study identified two novel risk variants for IgA nephropathy in VEGFA and PKD1L3 and helps expand our understanding of the genetic basis of IgA nephropathy susceptibility.


Assuntos
Estudo de Associação Genômica Ampla , Glomerulonefrite por IGA , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Predisposição Genética para Doença , Glomerulonefrite por IGA/genética , Haptoglobinas/genética , Progressão da Doença , Polimorfismo de Nucleotídeo Único
11.
Cell Death Dis ; 14(8): 511, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558679

RESUMO

Dysregulation of serine/arginine splicing factors (SRSFs) and abnormal alternative splicing (AS) have been widely implicated in various cancers but scarcely investigated in nasopharyngeal carcinoma (NPC). Here we examine the expression of 12 classical SRSFs between 87 NPC and 10 control samples, revealing a significant upregulation of SRSF3 and its association with worse prognosis in NPC. Functional assays demonstrate that SRSF3 exerts an oncogenic function in NPC progression. Transcriptome analysis reveals 1,934 SRSF3-regulated AS events in genes related to cell cycle and mRNA metabolism. Among these events, we verify the generation of a long isoform of AMOTL1 (AMOTL1-L) through a direct bond of the SRSF3 RRM domain with the exon 12 of AMOTL1 to promote exon inclusion. Functional studies also reveal that AMOTL1-L promotes the proliferation and migration of NPC cells, while AMOTL1-S does not. Furthermore, overexpression of AMOTL1-L, but not -S, significantly rescues the inhibitory effects of SRSF3 knockdown. Additionally, compared with AMOTL1-S, AMOTL1-L has a localization preference in the intracellular than the cell membrane, leading to a more robust interaction with YAP1 to promote nucleus translocation. Our findings identify SRSF3/AMOTL1 as a novel alternative splicing axis with pivotal roles in NPC development, which could serve as promising prognostic biomarkers and therapeutic targets for NPC.


Assuntos
Neoplasias Nasofaríngeas , Splicing de RNA , Humanos , Carcinoma Nasofaríngeo/genética , Transformação Celular Neoplásica/genética , Processamento Alternativo/genética , Neoplasias Nasofaríngeas/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Angiomotinas
12.
Am J Hum Genet ; 110(7): 1162-1176, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352861

RESUMO

Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Seguimentos , Predisposição Genética para Doença , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Homeodomínio/genética
15.
Clin Epigenetics ; 15(1): 19, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740715

RESUMO

BACKGROUND: Natural killer/T-cell lymphoma (NKTL) is a rare type of aggressive and heterogeneous non-Hodgkin's lymphoma (NHL) with a poor prognosis and limited therapeutic options. Therefore, there is an urgent need to exploit potential novel therapeutic targets for the treatment of NKTL. Histone deacetylase (HDAC) inhibitor chidamide was recently approved for treating relapsed/refractory peripheral T-cell lymphoma (PTCL) patients. However, its therapeutic efficacy in NKTL remains unclear. METHODS: We performed a phase II clinical trial to evaluate the efficacy of chidamide in 28 relapsed/refractory NKTL patients. Integrative transcriptomic, chromatin profiling analysis and functional studies were performed to identify potential predictive biomarkers and unravel the mechanisms of resistance to chidamide. Immunohistochemistry (IHC) was used to validate the predictive biomarkers in tumors from the clinical trial. RESULTS: We demonstrated that chidamide is effective in treating relapsed/refractory NKTL patients, achieving an overall response and complete response rate of 39 and 18%, respectively. In vitro studies showed that hyperactivity of JAK-STAT signaling in NKTL cell lines was associated with the resistance to chidamide. Mechanistically, our results revealed that aberrant JAK-STAT signaling remodels the chromatin and confers resistance to chidamide. Subsequently, inhibition of JAK-STAT activity could overcome resistance to chidamide by reprogramming the chromatin from a resistant to sensitive state, leading to synergistic anti-tumor effect in vitro and in vivo. More importantly, our clinical data demonstrated that combinatorial therapy with chidamide and JAK inhibitor ruxolitinib is effective against chidamide-resistant NKTL. In addition, we identified TNFRSF8 (CD30), a downstream target of the JAK-STAT pathway, as a potential biomarker that could predict NKTL sensitivity to chidamide. CONCLUSIONS: Our study suggests that chidamide, in combination with JAK-STAT inhibitors, can be a novel targeted therapy in the standard of care for NKTL. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02878278. Registered 25 August 2016, https://clinicaltrials.gov/ct2/show/NCT02878278.


Assuntos
Linfoma de Células T Periférico , Neoplasias , Humanos , Biomarcadores , Linhagem Celular Tumoral , Cromatina , Montagem e Desmontagem da Cromatina , Metilação de DNA , Janus Quinases/uso terapêutico , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Transdução de Sinais , Fatores de Transcrição STAT/uso terapêutico
16.
Ann Surg ; 277(4): 557-564, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538627

RESUMO

OBJECTIVE: To compare neoadjuvant chemotherapy (nCT) with CAPOX alone versus neoadjuvant chemoradiotherapy (nCRT) with capecitabine in locally advanced rectal cancer (LARC) with uninvolved mesorectal fascia (MRF). BACKGROUND DATA: nCRT is associated with higher surgical complications, worse long-term functional outcomes, and questionable survival benefits. Comparatively, nCT alone seems a promising alternative treatment in lower-risk LARC patients with uninvolved MRF. METHODS: Patients between June 2014 and October 2020 with LARC within 12 cm from the anal verge and uninvolved MRF were randomly assigned to nCT group with 4 cycles of CAPOX (Oxaliplatin 130 mg/m2 IV day 1 and Capecitabine 1000 mg/m2 twice daily for 14 d. Repeat every 3 wk) or nCRT group with Capecitabine 825 mg/m² twice daily administered orally and concurrently with radiation therapy (50 Gy/25 fractions) for 5 days per week. The primary end point is local-regional recurrence-free survival. Here we reported the results of secondary end points: histopathologic response, surgical events, and toxicity. RESULTS: Of the 663 initially enrolled patients, 589 received the allocated treatment (nCT, n=300; nCRT, n=289). Pathologic complete response rate was 11.0% (95% CI, 7.8-15.3%) in the nCT arm and 13.8% (95% CI, 10.1-18.5%) in the nCRT arm ( P =0.33). The downstaging (ypStage 0 to 1) rate was 40.8% (95% CI, 35.1-46.7%) in the nCT arm and 45.6% (95% CI, 39.7-51.7%) in the nCRT arm ( P =0.27). nCT was associated with lower perioperative distant metastases rate (0.7% vs. 3.1%, P =0.03) and preventive ileostomy rate (52.2% vs. 63.6%, P =0.008) compared with nCRT. Four patients in the nCT arm received salvage nCRT because of local disease progression after nCT. Two patients in the nCT arm and 5 in the nCRT arm achieved complete clinical response and were treated with a nonsurgical approach. Similar results were observed in subgroup analysis. CONCLUSIONS: nCT achieved similar pCR and downstaging rates with lower incidence of perioperative distant metastasis and preventive ileostomy compared with nCRT. CAPOX could be an effective alternative to neoadjuvant therapy in LARC with uninvolved MRF. Long-term follow-up is needed to confirm these results.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Terapia Neoadjuvante/métodos , Resultado do Tratamento , Capecitabina/uso terapêutico , Neoplasias Retais/patologia , Quimiorradioterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estadiamento de Neoplasias
17.
Nat Commun ; 13(1): 1966, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414057

RESUMO

Polygenic risk scores (PRS) have the potential to identify individuals at risk of diseases, optimizing treatment, and predicting survival outcomes. Here, we construct and validate a genome-wide association study (GWAS) derived PRS for nasopharyngeal carcinoma (NPC), using a multi-center study of six populations (6 059 NPC cases and 7 582 controls), and evaluate its utility in a nested case-control study. We show that the PRS enables effective identification of NPC high-risk individuals (AUC = 0.65) and improves the risk prediction with the PRS incremental deciles in each population (Ptrend ranging from 2.79 × 10-7 to 4.79 × 10-44). By incorporating the PRS into EBV-serology-based NPC screening, the test's positive predictive value (PPV) is increased from an average of 4.84% to 8.38% and 11.91% in the top 10% and 5% PRS, respectively. In summary, the GWAS-derived PRS, together with the EBV test, significantly improves NPC risk stratification and informs personalized screening.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Nasofaríngeas , Estudos de Casos e Controles , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Medição de Risco , Fatores de Risco
18.
Eur J Cancer ; 163: 26-34, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032814

RESUMO

AIM: Metastasis is the primary cause of treatment failure in nasopharyngeal carcinoma (NPC); however, the current tumour-node-metastasis staging system has limitations in predicting distant metastasis and guiding induction chemotherapy (IC) application. Here, we established a transcriptomics-based gene signature to assess the risk of distant metastasis and guide IC in locoregionally advanced NPC. METHODS: Transcriptome sequencing was performed on NPC biopsy samples from 12 pairs of patients with different metastasis risks. Bioinformatics and qPCR were used to identify differentially expressed genes (DEGs), while univariate and multivariate analyses were used to select prognostic indicators for the gene signature. A signature-based nomogram was established in a training cohort (n = 191) and validated in an external cohort (n = 263). RESULTS: Eleven DEGs were identified between metastatic and non-metastatic NPC. Four of these (AK4, CPAMD8, DDAH1 and CRTR1) were used to create a gene signature that effectively categorised patients into low- and high-risk metastasis groups (training: 91.1 versus 70.4%, p < 0.0001, C-index = 0.752; validation: 88.4 versus 73.9%, p = 0.00057, C-index = 0.741). IC with concurrent chemoradiotherapy (CCRT) improved distant metastasis-free survival in low-risk patients (94.4 versus 85.0%, p = 0.043), whereas patients in the high-risk group did not benefit from IC (72.6 versus 74.9%, p = 0.946). CONCLUSIONS: Our transcriptomics-based gene signature was able to reliably predict metastasis in locoregionally advanced NPC and could be used to identify candidates that could benefit from IC + CCRT.


Assuntos
Neoplasias Nasofaríngeas , Transcriptoma , Quimiorradioterapia , Humanos , Quimioterapia de Indução , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética
19.
Adv Sci (Weinh) ; 9(7): e2103029, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064757

RESUMO

Smad4, a key mediator of the transforming growth factor-ß signaling, is mutated or deleted in 20% of pancreatic ductal adenocarcinoma (PDAC) cancers and significantly affects cancer development. However, the effect of Smad4 loss on the immunogenicity and tumor immune microenvironment of PDAC is still unclear. Here, a surprising function of Smad4 in suppressing mouse PDAC tumor immunogenicity is identified. Although Smad4 deletion in tumor cells enhances proliferation in vitro, the in vivo growth of Smad4-deficient PDAC tumor is significantly inhibited on immunocompetent C57BL/6 (B6) mice, but not on immunodeficient mice or CD8+ cell-depleted B6 mice. Mechanistically, Smad4 deficiency significantly increases tumor cell immunogenicity by promoting spontaneous DNA damage and stimulating STING-mediated type I interferon signaling,which contributes to the activation of type 1 conventional dendritic cells (cDC1) and subsequent CD8+ T cells for tumor control. Furthermore, retarded tumor growth of Smad4-deficient PDAC cells on B6 mice is largely reversed when Sting is codeleted, or when the cells are implanted into interferon-alpha receptor-deficientmice or cDC1-deficientmice. Accordingly, Smad4 deficiency promotes PDAC immunogenicity by inducing tumor-intrinsic DNA damage-elicited type I interferon signaling.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pancreáticas , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , DNA , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Microambiente Tumoral
20.
Mol Ther ; 30(2): 606-620, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34601133

RESUMO

Hepatocellular carcinoma (HCC) is frequently characterized by metabolic and immune remodeling in the tumor microenvironment. We previously discovered that liver-specific deletion of fructose-1, 6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme ubiquitously suppressed in HCC tissues, promotes liver tumorigenesis and induces metabolic and immune perturbations closely resembling human HCC. However, the underlying mechanisms remain incompletely understood. Here, we reported that FBP1-deficient livers exhibit diminished amounts of natural killer (NK) cells and accelerated tumorigenesis. Using the diethylnitrosamine-induced HCC mouse model, we analyzed potential changes in the immune cell populations purified from control and FBP1-depleted livers and found that NK cells were strongly suppressed. Mechanistically, FBP1 attenuation in hepatocytes derepresses an zeste homolog 2 (EZH2)-dependent transcriptional program to inhibit PKLR expression. This leads to reduced levels of PKLR cargo proteins sorted into hepatocyte-derived extracellular vesicles (EVs), dampened activity of EV-targeted NK cells, and accelerated liver tumorigenesis. Our study demonstrated that hepatic FBP1 depletion promotes HCC-associated immune remodeling, partly through the transfer of hepatocyte-secreted, PKLR-attenuated EVs to NK cells.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Comunicação , Vesículas Extracelulares/metabolismo , Hepatócitos/metabolismo , Células Matadoras Naturais/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA