Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(5): 1017-1028, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38803105

RESUMO

Lignocellulolytic enzymes play a crucial role in efficiently converting lignocellulose into valuable platform molecules in various industries. However, they are limited by their production yields, costs, and stability. Consequently, their production by producers adapted to local environments and the choice of low-cost raw materials can address these limitations. Due to the large amounts of olive stones (OS) generated in Morocco which are still undervalued, Penicillium crustosum, Fusarium nygamai, Trichoderma capillare, and Aspergillus calidoustus, are cultivated under different fermentation techniques using this by-product as a local lignocellulosic substrate. Based on a multilevel factorial design, their potential to produce lignocellulolytic enzymes during 15 days of dark incubation was evaluated. The results revealed that P. crustosum expressed a maximum total cellulase activity of 10.9 IU/ml under sequential fermentation (SF) and 3.6 IU/ml of ß-glucosidase activity under submerged fermentation (SmF). F. nygamai recorded the best laccase activity of 9 IU/ml under solid-state fermentation (SSF). Unlike T. capillare, SF was the inducive culture for the former activity with 7.6 IU/ml. A. calidoustus produced, respectively, 1,009 µg/ml of proteins and 11.5 IU/ml of endoglucanase activity as the best results achieved. Optimum cellulase production took place after the 5th day under SF, while ligninases occurred between the 9th and the 11th days under SSF. This study reports for the first time the lignocellulolytic activities of F. nygamai and A. calidoustus. Furthermore, it underlines the potential of the four fungi as biomass decomposers for environmentally-friendly applications, emphasizing the efficiency of OS as an inducing substrate for enzyme production.


Assuntos
Fermentação , Lignina , Olea , Lignina/metabolismo , Olea/microbiologia , Aspergillus/enzimologia , Aspergillus/metabolismo , Celulase/metabolismo , Celulase/biossíntese , Lacase/metabolismo , Lacase/biossíntese , Penicillium/enzimologia , Penicillium/metabolismo , beta-Glucosidase/metabolismo , beta-Glucosidase/biossíntese , Fusarium/enzimologia , Fusarium/metabolismo , Trichoderma/enzimologia , Trichoderma/metabolismo , Fungos/enzimologia , Fungos/metabolismo , Marrocos , Proteínas Fúngicas/metabolismo
2.
J Genet Eng Biotechnol ; 20(1): 96, 2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35780465

RESUMO

BACKGROUND: Gaining insight into crop diversity, both at the genetic and phenotypic levels, is of prime importance for onion breeding with an enhanced yield and quality in combination with improved resistance to biotic and abiotic stresses. In the current study, 192 different onion plants, representing 16 ecotypes, were characterized using ISSR markers. RESULTS: Based on the ISSR marker profile, there was a clear grouping of the plants into 16 different ecotypes. Though the 16 populations originated from the same geographic region in Morocco, a significant genetic diversity was detected. After a genomic characterization, field trials in three different environments in Morocco were laid out. The phenotypic characterization showed that there were always significant differences between ecotypes, and for most traits, there was also a significant environmental effect and a significant interaction between environment and ecotype. The broad-sense heritability (H2) for the phenotypic traits associated with color (L*, a*, and b*) was the largest (84.2%, 80.6%, 79.2%), demonstrating that color is conditioned primarily by genetic factors. In contrast, the H2 for yield was the lowest (41.8%), indicating that the environment has a substantial effect on yield. In addition, there was a significant association between the presence/absence of certain bands and various phenotypic traits. CONCLUSION: ISSR markers are a powerful tool in distinguishing onion ecotypes. In addition, significant associations between marker scores and phenotypic traits could be detected, representing particular importance for future breeding programs.

3.
Front Plant Sci ; 13: 858804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310667

RESUMO

As the awareness on the ecological impact of chemical phosphate fertilizers grows, research turns to sustainable alternatives such as the implementation of phosphate solubilizing bacteria (PSB), which make largely immobile phosphorous reserves in soils available for uptake by plants. In this review, we introduce the mechanisms by which plants facilitate P-uptake and illustrate how PSB improve the bioavailability of this nutrient. Next, the effectiveness of PSB on increasing plant biomass and P-uptake is assessed using a meta-analysis approach. Our review demonstrates that improved P-uptake does not always translate in improved plant height and biomass. We show that the effect of PSB on plants does not provide an added benefit when using bacterial consortia compared to single strains. Moreover, the commonly reported species for P-solubilization, Bacillus spp. and Pseudomonas spp., are outperformed by the scarcely implemented Burkholderia spp. Despite the similar responses to PSB in monocots and eudicots, species responsiveness to PSB varies within both clades. Remarkably, the meta-analysis challenges the common belief that PSB are less effective under field conditions compared to greenhouse conditions. This review provides innovative insights and identifies key questions for future research on PSB to promote their implementation in agriculture.

4.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247636

RESUMO

The unique ecosystem of the Congolese rainforest has only scarcely been explored for its plant-fungal interactions. Here, we characterized the root fungal communities of field-grown maize and of Panicum from adjacent borders in the Congo Basin and assessed parameters that could shape them. The soil properties indicated that comparable poor soil conditions prevailed in fields and borders, illustrating the low input character of local subsistence farming. The rhizosphere fungal communities, dominated by ascomycetous members, were structured by plant species, slash-and-burn practices and soil P, pH and C/N ratio. Examining fungi with potential plant growth-promoting abilities, the glomeromycotan communities appeared to be affected by the same parameters, whereas the inconspicuous symbionts of the order Sebacinales seemed less susceptible to environmental and anthropogenic factors. Notwithstanding the low abundances at which they were detected, sebacinoids occurred in 87% of the field samples, implying that they represent a consistent taxon within indigenous fungal populations across smallholder farm sites. Pending further insight into their ecosystem functionality, these data suggest that Sebacinales are robust root inhabitants that might be relevant for on-farm inoculum development within sustainable soil fertility management in the Sub-Saharan region.


Assuntos
Agricultura/métodos , Basidiomycota/isolamento & purificação , Micobioma , Rizosfera , Microbiologia do Solo , Basidiomycota/classificação , Basidiomycota/genética , Congo , Fazendas , Panicum/crescimento & desenvolvimento , Panicum/microbiologia , Solo/química , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
5.
Toxins (Basel) ; 10(2)2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393913

RESUMO

Fusarium verticillioides is the most common fungal pathogen associated with maize ear rot in Tanzania. In a two-year trial, we investigated the efficacy of crop protection (insecticide and/or fungicide) and fertilizer (nitrogen and/or phosphorus) treatments in reducing the occurrence of F. verticillioides and its mycotoxins in maize grown in Tanzania. Seasonal differences were seen to have a substantial influence on the incidence and severity of insect infestation, Fusarium ear and kernel rot, biomass of F. verticillioides and contamination with fumonisins. With regard to the application of fertilizers, it was concluded that the impact on maize stalk borer injury, Fusarium symptoms and fumonisin levels was not significant, whereas crop protection significantly reduced maize damage. The application of an insecticide was most effective in reducing insect injury and as a result of the reduced insect injury the insecticide treatment also resulted in a significant decrease in Fusarium symptoms. In 2014, fumonisin levels were also significantly lower in maize treated with an insecticide. Additionally, significant positive correlations between insect damage and Fusarium symptoms were observed. In conclusion, this study clearly shows that application of an insecticide alone or in combination with a fungicide at anthesis significantly reduces insect damage and consequently reduces F. verticillioides infection and associated fumonisin contamination.


Assuntos
Fertilizantes , Fumonisinas/análise , Fungicidas Industriais/farmacologia , Fusarium , Inseticidas/farmacologia , Doenças das Plantas/prevenção & controle , Zea mays , Animais , Endossulfano/farmacologia , Larva , Mariposas , Nitrogênio/farmacologia , Fósforo/farmacologia , Triazóis/farmacologia , Zea mays/microbiologia , Zea mays/parasitologia
6.
Toxins (Basel) ; 9(9)2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832503

RESUMO

Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6. To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae.


Assuntos
Fusarium/genética , Tricotecenos/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Fusarium/metabolismo , Fusarium/fisiologia , Variação Genética , Fenótipo , Doenças das Plantas , Reprodução , Tricotecenos/biossíntese
7.
Int J Food Microbiol ; 181: 28-36, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24806576

RESUMO

Global food safety depends on continuous monitoring of food contaminants such as mycotoxins in cereals and cereal-derived products. Here, we combine this type of investigation with quantitative occurrence data on Fusarium infestation of these products in extensive correlation studies. Finally, this contributes to a thorough understanding of the presence, origin and physiology of Fusarium Head Blight (FHB) related mycotoxins and the correlations within their ranks. Two hundred and thirty-seven samples were analyzed from diverse cereal matrices, representing the most important stages of the cereal food and feed chain in Belgium. Food, feed and non-processed field samples were investigated, with a strong emphasis on whole-grain food products. Two approaches were pursued to estimate the full scope of FHB and its repercussions: UPLC-MS/MS was applied to detect twelve different mycotoxins, and Q-PCR was used to measure the presence of ten Fusarium species. We found that different matrices have different characteristic contamination profiles, and extensive correlation studies identified certain mycotoxins for future assessment (e.g. moniliformin produced by the Fusarium avenaceum/Fusarium tricinctum species group). The investigated harvest year of 2012 yielded many non-processed field materials containing elevated levels of deoxynivalenol (DON), while even in a so-called DON-year less prevalent toxins such as T-2 and HT-2 might be considered problematic due to their consistent co-occurrence with related mycotoxins. Our data illustrate complex interactions between the many Fusarium species that are responsible for FHB and their mycotoxins. Correlation studies demonstrate that consistent co-occurrence of mycotoxins is not to be neglected, and pinpoint issues for future surveillance and legislation.


Assuntos
Ração Animal/microbiologia , Grão Comestível/microbiologia , Microbiologia de Alimentos , Fusarium/fisiologia , Micotoxinas/análise , Bélgica , Biodiversidade , Análise por Conglomerados , DNA Fúngico/análise , DNA Fúngico/genética , Fusarium/genética , Genótipo , Micotoxinas/química
8.
Commun Agric Appl Biol Sci ; 79(4): 101-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26072578

RESUMO

The development of new crop species and their associated agro-ecosystems led simultaneously to the emergence of new pathogens (Stukenbrock and McDonald, 2008). This research focused on the recent emergence of powdery mildew (Blumeria graminis) on triticale (x Triticosecale Wittmack). In a first part, we aimed to gain insights into the evolutionary origin of this pathogen on its new host. A secondary aim was to investigate the presence of powdery mildew resistance in current commercial triticale cultivars, including its cellular basis of resistance. To address these research goals, we have pursued a molecular, pathological and cytological approach. This discussion will reflect on the experimental findings described in this research and their impact for future management of powdery mildew on triticale and other cereals.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Grão Comestível/microbiologia , Doenças das Plantas/microbiologia , Evolução Biológica , Regulação Fúngica da Expressão Gênica/fisiologia , Fatores de Tempo
9.
BMC Evol Biol ; 12: 76, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22658131

RESUMO

BACKGROUND: Powdery mildew, caused by the obligate biotrophic fungus Blumeria graminis, is a major problem in cereal production as it can reduce quality and yield. B. graminis has evolved eight distinct formae speciales (f.sp.) which display strict host specialization. In the last decade, powdery mildew has emerged on triticale, the artificial intergeneric hybrid between wheat and rye. This emergence is probably triggered by a host range expansion of the wheat powdery mildew B. graminis f.sp. tritici. To gain more precise information about the evolutionary processes that led to this host range expansion, we pursued a combined pathological and genetic approach. RESULTS: B. graminis isolates were sampled from triticale, wheat and rye from different breeding regions in Europe. Pathogenicity tests showed that isolates collected from triticale are highly pathogenic on most of the tested triticale cultivars. Moreover, these isolates were also able to infect several wheat cultivars (their previous hosts), although a lower aggressiveness was observed compared to isolates collected from wheat. Phylogenetic analysis of nuclear gene regions identified two statistically significant clades, which to a certain extent correlated with pathogenicity. No differences in virulence profiles were found among the sampled regions, but the distribution of genetic variation demonstrated to be geography dependent. A multilocus haplotype network showed that haplotypes pathogenic on triticale are distributed at different sites in the network, but always clustered at or near the tips of the network. CONCLUSIONS: This study reveals a genetic structure in B. graminis with population differentiation according to geography and host specificity. In addition, evidence is brought forward demonstrating that the host range expansion of wheat isolates to the new host triticale occurred recently and multiple times at different locations in Europe.


Assuntos
Ascomicetos/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum , Ascomicetos/genética , Grão Comestível , Especificidade de Hospedeiro , Filogeografia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA