Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Arch Physiol Biochem ; : 1-11, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599217

RESUMO

OBJECTIVE: This study investigates the impact of chronic humanin (HN) treatment on pain-related markers (NMDA, substance P, TRPV1, and IL-1ß) in diabetic mice's dorsal root ganglia (DRG). Additionally, we assess the effects of HN on cellular viability in DRG neurons. METHODS: In vivo experiments involved 15 days of HN administration (4 mg/kg) to diabetic mice (n = 10). Protein levels of NMDA, IL-1ß, TRPV1, and substance P were measured in diabetic DRG. In vitro experiments explored HN's impact on apoptosis and cellular viability, focusing on the JAK2/STAT3 pathway. RESULTS: Humanin significantly reduced the elevated expression of NMDA, IL-1ß, TRPV1, and substance P induced by diabetes (p < .05). Furthermore, HN treatment increased cellular viability in DRG neurons through JAK2/STAT3 pathway activation (p < .05). CONCLUSION: These findings highlight the significance of understanding mitochondrial function and pain markers, as well as apoptosis in diabetes. The study provides insights for managing the condition and its complications.

2.
Exp Neurol ; 375: 114729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365135

RESUMO

Social isolation is associated with poor stroke outcome, but the underlying molecular mechanisms were largely unknown. In male Balb/C mice exposed to transient middle cerebral artery occlusion (MCAo), we examined the effects of social isolation initiated post-weaning on ischemic injury, cytokine/chemokine responses and cell signaling using a broad panel of techniques that involved immunocytochemistry, cytokine/chemokine array and Western blots. Social isolation initiated post-weaning elevated infarct size, brain edema and neuronal injury in the ischemic brain tissue 3 days after MCAo, and increased microglia/ macrophage and leukocyte accumulation. In line with the increased immune cell recruitment, levels of several proinflammatory cytokines (e.g., IL-1α, IL-1ß, IL-13, IL-17, TNF-α, IFN-γ), chemokines (e.g., CCL3, CCL4, CCL12, CXCL2, CXCL9, CXCL12) and adhesion molecules (i.e., ICAM-1) were increased in the ischemic brain tissue of socially isolated compared with paired housing mice, whereas levels of selected cytokines (IL-5, IL-6, IL-16) and colony-stimulating factors (G-CSF, GM-CSF) were reduced. The activity of the transcription factor nuclear factor-ĸB (NF-ĸB), which promotes cell injury via pro-inflammatory responses, was increased by social isolation, whereas that of nuclear factor erythroid related factor-2 (Nrf-2), which mediates anti-oxidative responses under oxidative stress conditions, was reduced. Our study shows that social isolation profoundly alters post-ischemic cell signaling in a way promoting pro-inflammatory responses. Our results highlight the importance of social support in preventing deleterious health effects of social isolation.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Masculino , Citocinas/metabolismo , Quimiocinas , Acidente Vascular Cerebral/complicações , Infarto da Artéria Cerebral Média/complicações , Isolamento Social , Isquemia Encefálica/complicações
3.
J Photochem Photobiol B ; 248: 112797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862898

RESUMO

Drug resistant and undetectable tumors easily escape treatment leading metastases and/or recurrence of the lethal disease. Therefore, it is vital to diagnose and destroy micro tumors using simple yet novel approaches. Here, we present fluorescence-based detection and light-based destruction of cancer cells that are known to be resistant to standard therapies. We developed a superparamagnetic iron oxide nanoparticle (SPION)-based theranostic agent that is composed of self-quenching light activated photosensitizer (BPD) and EGFR targeting ligand (Anti-EGFR ScFv or GE11 peptide). Photosensitizer (BPD) was immobilized to PEG-PEI modified SPION with acid-labile linker. Prior to stimulation of the theranostic system by light its accumulation within cancer cells is vital since BPD phototoxicity and fluorescence is activated by lysosomal proteolysis. As BPD is cleaved, the system switches from off to on position which triggers imaging and therapy. Targeting, therapeutic and diagnostic features of the theranostic system were evaluated in high and moderate level EGFR expressing pancreatic cancer cell lines. Our results indicate that the system distinguishes high and moderate EGFR expression levels and yields up to 4.3-fold increase in intracellular fluorescence intensity. Amplification of fluorescence signal was as low as 1.3-fold in the moderate or no EGFR expressing cell lines. Anti-EGFR ScFv targeted SPION caused nearly 2-fold higher cell death via apoptosis in high EGFR expressing Panc-1 cell line. The developed system, possessing advanced targeting, enhanced imaging and effective therapeutic features, is a promising candidate for multi-mode detection and destruction of residual drug-resistant cancer cells.


Assuntos
Fármacos Fotossensibilizantes , Medicina de Precisão , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas Magnéticas de Óxido de Ferro , Nanomedicina Teranóstica/métodos , Receptores ErbB/metabolismo , Concentração de Íons de Hidrogênio
4.
Fluids Barriers CNS ; 20(1): 47, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328777

RESUMO

BACKGROUND: Reduced folate carrier 1 (RFC1; SLC19a1) is the main responsible transporter for the B9 family of vitamins named folates, which are essential for normal tissue growth and development. While folate deficiency resulted in retinal vasculopathy, the expression and the role of RFC1 in blood-retinal barrier (BRB) are not well known. METHODS: We used whole mount retinas and trypsin digested microvessel samples of adult mice. To knockdown RFC1, we delivered RFC1-targeted short interfering RNA (RFC1-siRNA) intravitreally; while, to upregulate RFC1 we delivered lentiviral vector overexpressing RFC1. Retinal ischemia was induced 1-h by applying FeCl3 to central retinal artery. We used RT-qPCR and Western blotting to determine RFC1. Endothelium (CD31), pericytes (PDGFR-beta, CD13, NG2), tight-junctions (Occludin, Claudin-5 and ZO-1), main basal membrane protein (Collagen-4), endogenous IgG and RFC1 were determined immunohistochemically. RESULTS: Our analyses on whole mount retinas and trypsin digested microvessel samples of adult mice revealed the presence of RFC1 in the inner BRB and colocalization with endothelial cells and pericytes. Knocking down RFC1 expression via siRNA delivery resulted in the disintegration of tight junction proteins and collagen-4 in twenty-four hours, which was accompanied by significant endogenous IgG extravasation. This indicated the impairment of BRB integrity after an abrupt RFC1 decrease. Furthermore, lentiviral vector-mediated RFC1 overexpression resulted in increased tight junction proteins and collagen-4, confirming the structural role of RFC1 in the inner BRB. Acute retinal ischemia decreased collagen-4 and occludin levels and led to an increase in RFC1. Besides, the pre-ischemic overexpression of RFC1 partially rescued collagen-4 and occludin levels which would be decreased after ischemia. CONCLUSION: In conclusion, our study clarifies the presence of RFC1 protein in the inner BRB, which has recently been defined as hypoxia-immune-related gene in other tissues and offers a novel perspective of retinal RFC1. Hence, other than being a folate carrier, RFC1 is an acute regulator of the inner BRB in healthy and ischemic retinas.


Assuntos
Barreira Hematorretiniana , Células Endoteliais , Proteína Carregadora de Folato Reduzido , Animais , Camundongos , Barreira Hematorretiniana/metabolismo , Células Endoteliais/metabolismo , Ácido Fólico/metabolismo , Imunoglobulina G , Ocludina/metabolismo , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , RNA Interferente Pequeno/metabolismo , Tripsina/metabolismo
5.
Transl Stroke Res ; 14(2): 263-277, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35583716

RESUMO

Considerable efforts are currently made to develop strategies that boost endogenous recovery once a stroke has occurred. Owing to their restorative properties, neurotrophic factors are attractive candidates that capitalize on endogenous response mechanisms. Non-conventional growth factors cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) promote neuronal survival and reduce neurological deficits in the acute phase of ischemic stroke in mice. Their effects on endogenous repair and recovery mechanisms in the stroke recovery phase were so far unknown. By intracerebroventricular delivery of CDNF or MANF starting 3 days post-stroke (1 µg/day for 28 days via miniosmotic pumps), we show that delayed CDNF and MANF administration promoted functional neurological recovery assessed by a battery of behavioral tests, increased long-term neuronal survival, reduced delayed brain atrophy, glial scar formation, and, in case of CDNF but not MANF, increased endogenous neurogenesis in the perilesional brain tissue. Besides, CDNF and MANF administration increased long-distance outgrowth of terminal axons emanating from the contralesional pyramidal tract, which crossed the midline to innervate ipsilesional facial nucleus. This plasticity promoting effect was accompanied by downregulation of the axonal growth inhibitor versican and the guidance molecules ephrin B1 and B2 in the previously ischemic hemisphere at 14 dpi, which represents a sensitive time-point for axonal growth. CDNF and MANF reduced the expression of the proinflammatory cytokines IL1ß and TNFα in both hemispheres. The effects of non-conventional growth factors in the ischemic brain should further be examined since they might help to identify targets for restorative stroke therapy.


Assuntos
Dopamina , Acidente Vascular Cerebral , Animais , Camundongos , Astrócitos/metabolismo , Axônios , Encéfalo/metabolismo , Dopamina/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia
6.
Arch Gerontol Geriatr ; 106: 104874, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470179

RESUMO

Exosomes released from different cell types of the central nervous system play an essential role in the pathogenesis of Alzheimer's disease (AD). In this study, we aimed to create an animal model by injecting exosomes that carry AD markers into the brain to shed light on the mechanism behind Alzheimer's pathology. Exosomes obtained from mouse Neuro2A, to which Aß toxicity model applied, were used as a mediator to build an AD phenotype. For this purpose, exosomes were administered into hippocampal CA3 region of mice with different ages. Firstly, the possible role of exosomes on brain volume was analyzed. Then, neurons and astrocytes were evaluated for survival. In addition, the progenitor cells' differentiation capacity was investigated via BrdU staining. AKT signaling pathway components were examined to detect the molecular mechanisms behind the exosomal function. We found different responses in different age groups. Expression of APP upregulated only in young animals upon delivery of Aß-exosomes. Interestingly, young animals represented increased numbers of neurons in the hippocampus, and neurogenesis was found to be restricted after Aß-Ex injections. However, in relation to exosome administration, the glial intensity increased in aged animals. Lastly, phosphorylation of survival kinase AKT was downregulated due to the presence of Aß in both young and old animals. The findings reveal that the exosomes from an in vitro Aß toxicity model may induce different responses in an age-dependent manner. This study is the first to report the relationship between exosomal function and aging by evaluating the key molecules.


Assuntos
Doença de Alzheimer , Exossomos , Animais , Camundongos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Front Cell Neurosci ; 16: 1012523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439202

RESUMO

Spinal cord injury (SCI) induces neurological deficits associated with long-term functional impairments. Since the current treatments remain ineffective, novel therapeutic options are needed. Besides its effect on bipolar mood disorder, lithium was reported to have neuroprotective activity in different neurodegenerative conditions, including SCI. In SCI, the effects of lithium on long-term neurological recovery and neuroplasticity have not been assessed. We herein investigated the effects of intraperitoneally administered lithium chloride (LiCl) on motor coordination recovery, electromyography (EMG) responses, histopathological injury and remodeling, and axonal plasticity in mice exposed to spinal cord transection. At a dose of 0.2, but not 2.0 mmol/kg, LiCl enhanced motor coordination and locomotor activity starting at 28 days post-injury (dpi), as assessed by a set of behavioral tests. Following electrical stimulation proximal to the hemitransection, LiCl at 0.2 mmol/kg decreased the latency and increased the amplitude of EMG responses in the denervated hindlimb at 56 dpi. Functional recovery was associated with reduced gray and white matter atrophy rostral and caudal to the hemitransection, increased neuronal survival and reduced astrogliosis in the dorsal and ventral horns caudal to the hemitransection, and increased regeneration of long-distance axons proximal and distal to the lesion site in mice receiving 0.2 mmol/kg, but not 2 mmol/kg LiCl, as assessed by histochemical and immunohistochemical studies combined with anterograde tract tracing. Our results indicate that LiCl induces long-term neurological recovery and neuroplasticity following SCI.

8.
Front Nutr ; 9: 874254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449538

RESUMO

L-Theanine is commonly used to improve sleep quality through inhibitory neurotransmitters. On the other hand, Mg2+, a natural NMDA antagonist and GABA agonist, has a critical role in sleep regulation. Using the caffeine-induced brain electrical activity model, here we investigated the potency of L-theanine and two novel Mg-L-theanine compounds with different magnesium concentrations on electrocorticography (ECoG) patterns, GABAergic and serotonergic receptor expressions, dopamine, serotonin, and melatonin levels. Furthermore, we evaluated the sleep latency and duration in the pentobarbital induced sleep model. We herein showed that L-theanine, particularly its various complexes with magnesium increases the expression of GABAergic, serotonergic, and glutamatergic receptors, which were associated with decreased ECoG frequency, increased amplitude, and enhanced delta wave powers. Besides increased dopamine, serotonin, and melatonin; decreased MDA and increased antioxidant enzyme levels were also observed particularly with Mg-complexes. Protein expression analyses also showed that Mg-L-theanine complexes decrease inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) levels significantly. In accordance with these results, Mg complexes improved the sleep latency and duration even after caffeine administration. As a result, our data indicate that Mg-L-theanine compounds potentiate the effect of L-theanine on sleep by boosting slow-brain waves, regulating brain electrical activity, and increasing neurotransmitter and GABA receptor levels.

9.
Nat Commun ; 13(1): 1823, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383158

RESUMO

Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.


Assuntos
Traumatismo por Reperfusão , Trombose , Animais , Plaquetas/metabolismo , Humanos , Camundongos , Ativação Plaquetária , Reperfusão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Trombose/metabolismo
10.
J Mol Neurosci ; 72(5): 994-1007, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307786

RESUMO

Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention. Therefore, in the present study, the coordination of ipsilateral and contralateral hemispheres to evaluate delayed post-acute effect of melatonin was examined on recovery of the cell survival and apoptosis after stroke. Melatonin was administered (4 mg/kg/day) intraperitoneally for 45 days, starting 3 days after 30 min of middle cerebral artery occlusion. The genes and proteins related to the cell survival and apoptosis were investigated by immunofluorescence, western blotting, and RT-PCR techniques after behavioral experiments. Melatonin produced delayed neurological recovery by improving motor coordination on grip strength and rotarod tests. This neurological recovery was also reflected by high level of NeuN positive cells and low level of TUNEL-positive cells suggesting enhanced neuronal survival and reduced apoptosis at the fifty-fifth day of stroke. The increase of NGF, Nrp1, c-jun; activation of AKT; and dephosphorylation of ERK and JNK at the fifty-fifth day showed that cell survival and apoptosis signaling molecules compete to contribute to the remodeling of brain. Furthermore, an increase in the CREB and Atf-1 expressions suggested the melatonin's strong reformative effect on neuronal regeneration. The contralateral hemisphere was more active at the latter stages of the molecular and functional regeneration which provides a further proof of principle about melatonin's action on the promotion of brain plasticity and recovery after stroke.


Assuntos
Isquemia Encefálica , Melatonina , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/metabolismo , Sobrevivência Celular , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
11.
Exp Neurol ; 351: 113996, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122865

RESUMO

Lithium, in addition to its effect on acute and long-term bipolar disorder, is involved in neuroprotection after ischemic stroke. Yet, its mechanism of action is still poorly understood, which was only limited to its modulatory effect on GSK pathway. Therefore, we initially analyzed the dose-dependent effects of lithium on neurological deficits, infarct volume, brain edema and blood-brain barrier integrity, along with neuronal injury and survival in mice subjected to focal cerebral ischemia. Thereafter, we investigated the involvement of the PI3K/Akt and MEK signal transduction pathways and their components. Our observations revealed that 2 mmol/kg lithium significantly improved post-ischemic brain tissue survival. Although, 2 mmol/kg lithium had no negative effect on brain microcirculation, 5 and 20 mmol/kg lithium reduced brain perfusion. Furthermore, supratherapeutic dose of lithium in 20 mmol/kg lead to animal death. In addition, improvement of brain perfusion with L-arginine, did not change the effect of 5 mmol/kg lithium on brain injury. Additionally, post-stroke blood-brain barrier leakage, hemodynamic impairment and apoptosis have been reversed by lithium treatment. Interestingly, lithium-induced neuroprotection was associated with increased phosphorylation of Akt at Thr308 and suppressed GSK-3ß phosphorylation at Ser9 residue. Lithium upregulated Erk-2 and downregulated JNK-2 phosphorylation. To distinguish whether neuroprotective effects of lithium are modulated by PI3K/Akt or MEK, we sequentially blocked these pathways and demonstrated that the neuroprotective activity of lithium persisted during MEK/ERK inhibition, whereas PI3K/Akt inhibition abolished neuroprotection. Collectively, we demonstrated lithium exerts its post-stroke neuroprotective activity via the PI3K/Akt pathway, specifically via Akt phosphorylation at Thr308, but not via MEK/ERK.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Apoptose , Isquemia Encefálica/metabolismo , Infarto Cerebral , Glicogênio Sintase Quinase 3 beta/metabolismo , Lítio/farmacologia , Lítio/uso terapêutico , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acidente Vascular Cerebral/complicações
12.
Turk J Med Sci ; 52(1): 248-257, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34773698

RESUMO

BACKGROUND: Glial cell-line-derived neurotrophic factor (GDNF) is a well-known regulatory neurotrophic factor on dopaminergic neurons. Several pathologies have been documented so far in case of any impairment in the dopaminergic system. This study aimed to investigate the potential protective role of lentiviral GNDF delivery on the small population of tyrosine hydroxylase (TH) positive dopamine producing striatal neurons after ischemic stroke. METHODS: Fourteen C57BL/6J male mice (8-10 weeks) were intracerebrally treated with lentiviral GDNF (Lv-GDNF) or vehicle. Ten days after injections, cerebral ischemia was induced by blockage of the middle cerebral artery. Animals were terminated 72 h after ischemia, and their brains were taken for histological and molecular investigations. Following confirmation of GDNF overexpression, TH immunostaining and immunoblotting were used to evaluate the role of GDNF on dopaminergic neurons. Next, Fluro Jade C staining was implemented to examine the degree of neuronal degeneration at the damaged parenchyma. RESULTS: Neither the amount of TH positive dopaminergic neurons nor the expression of TH changed in the Lv-GDNF treated animals comparing to the vehicle group. On the other hand, GDNF exposure caused a significant increase in the expression of Nurr1, an essential transcription factor for dopaminergic neurons and Gap43, growth and plasticity promoting protein, in the ischemic striatum. Treatment with Lv-GDNF gave rise to a significant reduction in the number of degenerated neurons. Finally, enhanced GDNF expression also induced expression of an important stress-related transcription factor NF-κB as well as the nitric oxide synthase enzymes iNOS and nNOS in the contralesional hemisphere.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , AVC Isquêmico , Animais , Camundongos , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Isquemia , Fatores de Transcrição
13.
J Stroke Cerebrovasc Dis ; 30(12): 106105, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547676

RESUMO

OBJECTIVES: Post-ischemic inflammation leads to apoptosis as an indirect cause of functional disabilities after the stroke. Melatonin may be a good candidate for the stroke recovery because of its anti-inflammatory effects. Therefore, we investigated the effect of melatonin on inflammation in the functional recovery of brain by evaluating ipsilesional and contralesional alterations. MATERIALS AND METHODS: Melatonin (4 mg/kg/day) was intraperitoneally administered into the mice from the 3rd to the 55th day of the post-ischemia after 30 min of middle cerebral artery occlusion. RESULTS: Melatonin produced a functional recovery by reducing the emigration of the circulatory leukocytes and the local microglial activation within the ischemic brain. Overall, the expression of the inflammation-related genes reduced upon melatonin treatment in the ischemic hemisphere. On the other hand, the expression level of the inflammatory cytokine genes raised in the contralateral hemisphere at the 55th day of the post-ischemia. Furthermore, melatonin triggers an increase in the iNOS expression and a decrease in the nNOS expression in the ipsilateral hemisphere at the earlier times in the post-ischemic recovery. At the 55th day of the post-ischemic recovery, melatonin administration enhanced the eNOS and nNOS protein expressions. CONCLUSIONS: The present molecular, biological, and histological data have revealed broad anti-inflammatory effects of melatonin in both hemispheres with distinct temporal and spatial patterns at different phases of post-stroke recovery. These outcomes also established that melatonin act recruitment of contralesional rather than of ipsilesional.


Assuntos
Isquemia Encefálica , Citocinas , Inflamação , Melatonina , Plasticidade Neuronal , Animais , Anti-Inflamatórios/administração & dosagem , Isquemia Encefálica/fisiopatologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Melatonina/administração & dosagem , Camundongos , Plasticidade Neuronal/fisiologia , Tempo para o Tratamento
14.
Turk J Med Sci ; 51(5): 2705-2715, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33356029

RESUMO

BACKGROUND: Circadian rhythm plays a significant role in the regulation of almost all kinds of physiological processes. In addition, it may also have a direct or indirect effect on the neurodegenerative processes, including Alzheimer's disease, Parkinson's disease, and ischemic stroke. Therefore, the identification of circadian rhythm-related proteins is crucial to be able to understand the molecular mechanism of the circadian rhythm and to define new therapeutic target for the treatment of degenerative disorders. METHODS: To identify the light and dark regulated proteins, 8-12 weeks, male Balb/C mice were used at two different time points (morning (Zeitgeber time-0 (ZT0)) and midnight (ZT18)) under physiological conditions. Therefore, brain tissues were analyzed via liquid chromatography tandem mass spectrometry. RESULTS: A total of 1621 different proteins were identified between ZT0 and ZT18 mice. Among these proteins, 23 proteins were differentially expressed (p < 0.05 and fold change 1.4) in ZT18 mice, 11 upregulated (AKAP10, ALDOC, BLK, NCALD, NFL, PDE10A, PICAL, PSMB6, RL10, SH3L3, and SYNJ1), and 12 downregulated (AT2A2, AT2B1, CPNE5, KAP3, MAON, NPM, PI51C, PPR1B, SAM50, TOM70, TY3H, and VAPA) as compared with ZT0 mice. DISCUSSION: Taken together, here we identified circadian rhythm-related proteins, and our further analysis revealed that these proteins play significant roles in molecular function, membrane trafficking, biogenesis, cellular process, metabolic process, and neurodegenerative disorders such as Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Masculino , Camundongos , Ritmo Circadiano/fisiologia , Encéfalo , Camundongos Endogâmicos BALB C
15.
Mol Neurobiol ; 55(3): 2565-2576, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28421530

RESUMO

Occurrence of stroke cases displays a time-of-day variation in human. However, the mechanism linking circadian rhythm to the internal response mechanisms against pathophysiological events after ischemic stroke remained largely unknown. To this end, temporal changes in the susceptibility to ischemia/reperfusion (I/R) injury were investigated in mice in which the ischemic stroke induced at four different Zeitgeber time points with 6-h intervals (ZT0, ZT6, ZT12, and ZT18). Besides infarct volume and brain swelling, neuronal survival, apoptosis, ischemia, and circadian rhythm related proteins were examined using immunohistochemistry, Western blot, planar surface immune assay, and liquid chromatography-mass spectrometry tools. Here, we present evidence that midnight (ZT18; 24:00) I/R injury in mice resulted in significantly improved infarct volume, brain swelling, neurological deficit score, neuronal survival, and decreased apoptotic cell death compared with ischemia induced at other time points, which were associated with increased expressions of circadian proteins Bmal1, PerI, and Clock proteins and survival kinases AKT and Erk-1/2. Moreover, ribosomal protein S6, mTOR, and Bad were also significantly increased, while the levels of PRAS40, negative regulator of AKT and mTOR, and phosphorylated p53 were decreased at this time point compared to ZT0 (06:00). Furthermore, detailed proteomic analysis revealed significantly decreased CSKP, HBB-1/2, and HBA levels, while increased GNAZ, NEGR1, IMPCT, and PDE1B at midnight as compared with early morning. Our results indicate that nighttime I/R injury results in less severe neuronal damage, with increased neuronal survival, increased levels of survival kinases and circadian clock proteins, and also alters the circadian-related proteins.


Assuntos
Fatores de Transcrição ARNTL/biossíntese , Isquemia Encefálica/metabolismo , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/biossíntese , Acidente Vascular Cerebral/metabolismo , Animais , Isquemia Encefálica/patologia , Sobrevivência Celular/fisiologia , Relógios Circadianos/fisiologia , Fragmentação do DNA , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/patologia , Acidente Vascular Cerebral/patologia
16.
Redox Biol ; 12: 657-665, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28395173

RESUMO

Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI) in mice. However, it is not clear (i) whether increased PI3K/Akt phosphorylation is a concomitant event or it directly contributes to melatonin's neuroprotective effect, and (ii) how melatonin regulates PI3K/Akt signaling pathway after FCI. In this study, we showed that Akt was intensively phosphorylated at the Thr308 activation loop as compared with Ser473 by melatonin after FCI. Melatonin treatment reduced infarct volume, which was reversed by PI3K/Akt inhibition. However, PI3K/Akt inhibition did not inhibit melatonin's positive effect on brain swelling and IgG extravasation. Additionally, phosphorylation of mTOR, PTEN, AMPKα, PDK1 and RSK1 were increased, while phosphorylation of 4E-BP1, GSK-3α/ß, S6 ribosomal protein were decreased in melatonin treated animals. In addition, melatonin decreased apoptosis through reduced p53 phosphorylation by the PI3K/Akt pathway. In conclusion, we demonstrated the activation profiles of PI3K/Akt signaling pathway components in the pathophysiological aspect of ischemic stroke and melatonin's neuroprotective activity. Our data suggest that Akt phosphorylation, preferably at the Thr308 site of the activation loop via PDK1 and PTEN, mediates melatonin's neuroprotective activity and increased Akt phosphorylation leads to reduced apoptosis.


Assuntos
Antioxidantes/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Melatonina/administração & dosagem , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antioxidantes/farmacologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina G/metabolismo , Melatonina/farmacologia , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/química , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais/efeitos dos fármacos , Treonina/metabolismo
17.
Metab Brain Dis ; 31(4): 827-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26943480

RESUMO

Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.


Assuntos
Hormônio do Crescimento/sangue , Hipóxia-Isquemia Encefálica/sangue , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/patologia , Animais , Sobrevivência Celular , Fragmentação do DNA , Modelos Animais de Doenças , Feminino , Hipóxia-Isquemia Encefálica/patologia , Masculino , Ratos
18.
Nephron ; 132(4): 292-300, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938976

RESUMO

BACKGROUND: This study aimed at investigating the possible protective effect of erythropoietin beta on experimental diabetic nephropathy (DN) model in rats. METHODS: Sprague Dawley rats (n = 32) were allocated into 4 equal groups of 8 each, the control (Group C), diabetes (Group D), erythropoietin beta (Group E), and erythropoietin beta treated DN (Group E + D) groups. Streptozocin (65 mg/kg) was used to induce diabetes in 10-week old rats. Erythropoietin beta was given intraperitoneally at a dose of 500 IU/kg/3 days of a week for 12 weeks. Renal function parameters, intrarenal levels and activities of oxidative stress biomarkers, serum inflammatory parameters and kidney histology were determined. RESULTS: Group E + D had lower mean albumin-to-creatinine ratio (p < 0.001) as well as higher creatinine clearance (p = 0.035) than the diabetic rats (Group D). Intrarenal malondialdehyde levels were significantly lower (p = 0.004); glutathione (GSH) levels (p = 0.003), GSH peroxidase (p = 0.004) and superoxide dismutase (p < 0.005) activities of renal tissue were significantly higher in Group E + D than in Group D. The mean serum levels of interleukin-4 (p < 0.005), interleukin 1 beta (p = 0.012), interferon gamma (p = 0.018) and tumor necrosis factor alpha (p < 0.005) were significantly lower; serum levels of monocyte chemoattractant protein 1 (p = 0.018) was significantly higher in Group E + D when compared to Group D. The mean scores of tubulointerstitial inflammation (p = 0.004), tubular injury (p = 0.013) and interstitial fibrosis (p = 0.003) were also lower in Group E + D when compared to Group D. CONCLUSION: Our data seem to suggest a potential role of erythropoietin beta for reducing the progression of DN in an experimental rat model. This protective effect is, in part, attributable to the suppression of the inflammatory response and oxidative damage.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Modelos Animais de Doenças , Eritropoetina/uso terapêutico , Animais , Citocinas/sangue , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/metabolismo , Glutationa/metabolismo , Mediadores da Inflamação/sangue , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
19.
Neurosci Lett ; 612: 92-97, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26639427

RESUMO

The tissue damage that emerges during traumatic brain injury (TBI) is a consequence of a variety of pathophysiological events, including free radical generation and over-activation of N-methyl-d-aspartate-type glutamate receptors (NMDAR). Considering the complex pathophysiology of TBI, we hypothesized that combination of neuroprotective compounds, targeting different events which appear during injury, may be a more promising approach for patients. In this context, both NMDAR antagonist memantine and free radical scavenger melatonin are safe in humans and promising agents for the treatment of TBI. Herein, we examined the effects of melatonin administered alone or in combination with memantine on the activation of signaling pathways, injury development and DNA fragmentation. Both compounds reduced brain injury moderately and the density of DNA fragmentation significantly. Notably, melatonin/memantine combination decreased brain injury and DNA fragmentation significantly, which was associated with reduced p38 and ERK-1/2 phosphorylation. As compared with melatonin and memantine groups, SAPK/JNK-1/2 phosphorylation was also reduced in melatonin/memantine combined animals. In addition, melatonin, memantine and their combination decreased iNOS activity significantly. Here, we provide evidence that melatonin/memantine combination protects brain from traumatic injury, which was associated with decreased DNA fragmentation, p38 phosphorylation and iNOS activity.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Melatonina/farmacologia , Memantina/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Infarto Encefálico/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Fragmentação do DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/uso terapêutico , Masculino , Melatonina/uso terapêutico , Memantina/uso terapêutico , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores/uso terapêutico
20.
Front Cell Neurosci ; 8: 422, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565957

RESUMO

3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA