Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229019

RESUMO

Nuclear exclusion and cytoplasmic accumulation of the RNA-binding protein TDP43 are characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite this, the origin and ultrastructure of cytosolic TDP43 deposits remain unknown. Accumulating evidence suggests that abnormal RNA homeostasis can drive pathological TDP43 mislocalization, enhancing RNA misprocessing due to loss of nuclear TDP43 and engendering a cycle that ends in cell death. Here, we show that adding small monovalent oligonucleotides successfully recapitulates pathological TDP43 mislocalization and aggregation in iPSC-derived neurons (iNeurons). By employing a multimodal in situ cryo-correlative light and electron microscopy pipeline, we examine how RNA influences the localization and aggregation of TDP43 in near-native conditions. We find that mislocalized TDP43 forms ordered fibrils within lysosomes and autophagosomes in iNeurons as well as in patient tissue, and provide the first high-resolution snapshots of TDP43 aggregates in situ. In so doing, we provide a cellular model for studying initial pathogenic events underlying ALS, FTLD, and related TDP43-proteinopathies.

2.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39005384

RESUMO

The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, highly prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a byproduct of TDP43 autoregulation and cleared by nonsense mediated RNA decay (NMD). The sTDP43-encoding transcripts that escape NMD can lead to toxicity but are rapidly degraded post-translationally. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration in vitro and in vivo via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and provide insight into the consequences of aberrant sTDP43 accumulation in disease.

3.
Mol Cell ; 83(2): 219-236.e7, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36634675

RESUMO

RNA methylation at adenosine N6 (m6A) is one of the most common RNA modifications, impacting RNA stability, transport, and translation. Previous studies uncovered RNA destabilization in amyotrophic lateral sclerosis (ALS) models in association with accumulation of the RNA-binding protein TDP43. Here, we show that TDP43 recognizes m6A RNA and that RNA methylation is critical for both TDP43 binding and autoregulation. We also observed extensive RNA hypermethylation in ALS spinal cord, corresponding to methylated TDP43 substrates. Emphasizing the importance of m6A for TDP43 binding and function, we identified several m6A factors that enhance or suppress TDP43-mediated toxicity via single-cell CRISPR-Cas9 in primary neurons. The most promising modifier-the canonical m6A reader YTHDF2-accumulated within ALS spinal neurons, and its knockdown prolonged the survival of human neurons carrying ALS-associated mutations. Collectively, these data show that m6A modifications modulate RNA binding by TDP43 and that m6A is pivotal for TDP43-related neurodegeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Metilação , Neurônios/metabolismo , RNA/genética , RNA/metabolismo
4.
J Mol Biol ; 432(4): 1020-1034, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31866295

RESUMO

Apolipoproteins are involved in pathological conditions of Alzheimer's disease (AD), and it has been reported that truncated apolipoprotein fragments and ß-amyloid (Aß) peptides coexist as neurotoxic heteromers within the plaques. Therefore, it is important to investigate these complexes at the molecular level to better understand their properties and roles in the pathology of AD. Here, we present a mechanistic insight into such heteromerization using a structurally homologue apolipoprotein fragment of apoA-I (4F) complexed with Aß(M1-42) and characterize their toxicity. The 4F peptide slows down the aggregation kinetics of Aß(M1-42) by constraining its structural plasticity. NMR and CD experiments identified 4F-Aß(M1-42) heteromers comprised of unstructured Aß(M1-42) and helical 4F. A uniform two-fold reduction in 15N/1H NMR signal intensities of Aß(M1-42) with no observable chemical shift perturbation indicated the formation of a large complex, which was further confirmed by diffusion NMR experiments. Microsecond-scale atomistic molecular dynamics simulations showed that 4F interaction with Aß(M1-42) is electrostatically driven and induces unfolding of Aß(M1-42). Neurotoxicity profiling of Aß(M1-42) complexed with 4F confirms a significant reduction in cell viability and neurite growth. Thus, the molecular architecture of heteromerization between 4F and Aß(M1-42) discovered in this study provides evidence toward our understanding of the role of apolipoproteins or their truncated fragments in exacerbating AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteína A-I/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Apolipoproteína A-I/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Conformação Proteica
5.
Autophagy ; 15(10): 1787-1800, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894053

RESUMO

It has been indicated that the Golgi apparatus contributes to autophagy, but how it is involved in autophagosome formation and maturation is not well understood. Here we show that amino acid starvation causes trans-Golgi derived membrane fragments to colocalize with autophagosomes. Depletion of the Golgi stacking protein GORASP2/GRASP55, but not GORASP1/GRASP65, increases both MAP1LC3 (LC3)-II and SQSTM1/p62 levels. We demonstrate that GORASP2 facilitates autophagosome-lysosome fusion by physically linking autophagosomes and lysosomes through the interactions with LC3 on autophagosomes and LAMP2 on late endosomes/lysosomes. Furthermore, we provide evidence that GORASP2 interacts with BECN1 to facilitate the assembly and membrane association of the phosphatidylinositol 3-kinase (PtdIns3K) UVRAG complex. These findings indicate that GORASP2 plays an important role in autophagosome maturation during amino acid starvation. Abbreviations: ATG14: autophagy related 14; BafA1: bafilomycin A1; BSA: bovine serum albumin; CQ: chloroquine; EBSS: earle's balanced salt solution; EM: electron microscopy; EEA1: early endosome antigen 1; GFP: green fluorescent protein; GORASP1/GRASP65: golgi reassembly stacking protein 1; GORASP2/GRASP55: golgi reassembly stacking protein 2; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PBS: phosphate-buffered saline; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PK: protease K; PNS: post-nuclear supernatant; RFP: red fluorescent protein; SD: standard deviation; TGN: trans-Golgi network; UVRAG: UV radiation resistance associated.


Assuntos
Autofagossomos/fisiologia , Proteínas da Matriz do Complexo de Golgi/fisiologia , Lisossomos/fisiologia , Fusão de Membrana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/genética , Células Cultivadas , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Ratos , Proteínas Supressoras de Tumor/fisiologia
6.
Mol Biol Cell ; 30(6): 766-777, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30649990

RESUMO

The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5ß1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders.


Assuntos
Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/fisiologia , Proteínas de Transporte , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Glicosilação , Complexo de Golgi/fisiologia , Proteínas da Matriz do Complexo de Golgi/metabolismo , Células HeLa/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana , Ligação Proteica , Transporte Proteico/fisiologia
7.
Chem Commun (Camb) ; 54(91): 12883-12886, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30379172

RESUMO

Polymethacrylate-copolymer (PMA) encased lipid-nanodiscs (∼10 nm) and macro-nanodiscs (>15 nm) are used to study Aß1-40 aggregation. We demonstrate that PMA-nanodiscs form a ternary association with Aß and regulate its aggregation kinetics by trapping intermediates. Results demonstrating the reduced neurotoxicity of nanodisc-bound Aß oligomers are also reported.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Nanoestruturas/química , Fragmentos de Peptídeos/metabolismo , Ácidos Polimetacrílicos/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Dimiristoilfosfatidilcolina/química , Difusão Dinâmica da Luz , Humanos , Cinética , Microscopia de Fluorescência , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Termodinâmica
8.
Mol Biol Cell ; 28(21): 2833-2842, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814501

RESUMO

Golgi reassembly stacking protein of 65 kDa (GRASP65) and Golgi reassembly stacking protein of 55 kDa (GRASP55) were originally identified as Golgi stacking proteins; however, subsequent GRASP knockdown experiments yielded inconsistent results with respect to the Golgi structure, indicating a limitation of RNAi-based depletion. In this study, we have applied the recently developed clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to knock out GRASP55 and GRASP65, individually or in combination, in HeLa and HEK293 cells. We show that double knockout of GRASP proteins disperses the Golgi stack into single cisternae and tubulovesicular structures, accelerates protein trafficking, and impairs accurate glycosylation of proteins and lipids. These results demonstrate a critical role for GRASPs in maintaining the stacked structure of the Golgi, which is required for accurate posttranslational modifications in the Golgi. Additionally, the GRASP knockout cell lines developed in this study will be useful tools for studying the role of GRASP proteins in other important cellular processes.


Assuntos
Complexo de Golgi/fisiologia , Proteínas de Membrana/deficiência , Sequência de Bases , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA
9.
Dev Cell ; 41(3): 262-273.e6, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28486130

RESUMO

Gastric acid secretion by parietal cells requires trafficking and exocytosis of H/K-ATPase-rich tubulovesicles (TVs) toward apical membranes in response to histamine stimulation via cyclic AMP elevation. Here, we found that TRPML1 (ML1), a protein that is mutated in type IV mucolipidosis (ML-IV), is a tubulovesicular channel essential for TV exocytosis and acid secretion. Whereas ML-IV patients are reportedly achlorhydric, transgenic overexpression of ML1 in mouse parietal cells induced constitutive acid secretion. Gastric acid secretion was blocked and stimulated by ML1 inhibitors and agonists, respectively. Organelle-targeted Ca2+ imaging and direct patch-clamping of apical vacuolar membranes revealed that ML1 mediates a PKA-activated conductance on TV membranes that is required for histamine-induced Ca2+ release from TV stores. Hence, we demonstrated that ML1, acting as a Ca2+ channel in TVs, links transmitter-initiated cyclic nucleotide signaling with Ca2+-dependent TV exocytosis in parietal cells, providing a regulatory mechanism that could be targeted to manage acid-related gastric diseases.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Exocitose/fisiologia , Ácido Gástrico/metabolismo , Células Parietais Gástricas/metabolismo , Animais , Transporte Biológico/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Histamina/metabolismo , Camundongos , Transdução de Sinais/fisiologia
10.
PLoS One ; 11(4): e0153518, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27082996

RESUMO

OTSSP167 was recently characterized as a potent inhibitor for maternal embryonic leucine zipper kinase (MELK) and is currently tested in Phase I clinical trials for solid tumors that have not responded to other treatment. Here we report that OTSSP167 abrogates the mitotic checkpoint at concentrations used to inhibit MELK. The abrogation is not recapitulated by RNAi mediated silencing of MELK in cells. Although OTSSP167 indeed inhibits MELK, it exhibits off-target activity against Aurora B kinase in vitro and in cells. Furthermore, OTSSP167 inhibits BUB1 and Haspin kinases, reducing phosphorylation at histones H2AT120 and H3T3 and causing mislocalization of Aurora B and associated chromosomal passenger complex from the centromere/kinetochore. The results suggest that OTSSP167 may have additional mechanisms of action for cancer cell killing and caution the use of OTSSP167 as a MELK specific kinase inhibitor in biochemical and cellular assays.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Anticorpos/farmacologia , Aurora Quinase B/antagonistas & inibidores , Centrômero/efeitos dos fármacos , Centrômero/fisiologia , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/fisiologia , Células MCF-7 , Mitose/efeitos dos fármacos , Mitose/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/efeitos dos fármacos
11.
Front Neurosci ; 9: 340, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441511

RESUMO

The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aß-induced fragmentation and reduces Aß production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development.

12.
Nat Commun ; 6: 6775, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25854549

RESUMO

The chromosomal passenger complex (CPC) localizes to centromeres where it activates the mitotic checkpoint in response to inappropriate inter-kinetochore tension. This error correction function is essential for proper chromosome segregation. Here we define several critical features of CPC localization and function. First, the Borealin dimerization domain suppresses dynamic exchange at the centromere to allow optimal CPC function. Second, Borealin dimerization is essential to target a subpopulation of CPC proximal to the kinetochore when the mitotic spindle is disrupted. This subpopulation is also needed for full CPC checkpoint function. The existence of a pool of CPC at the kinetochore suggests that error correction is more complicated than predicted from the Aurora B phosphorylation gradient model. Finally, Haspin kinase plays a key role in maintaining the slowly exchanging centromere Borealin pool, while Aurora B and Mps1 play minimal roles in maintaining CPC localization once cells are in mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Multimerização Proteica , Aurora Quinase B/metabolismo , Western Blotting , Centrômero/metabolismo , Citometria de Fluxo , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Código das Histonas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia de Fluorescência , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo
13.
J Biol Chem ; 288(49): 35149-58, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24151075

RESUMO

MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Mitose , Morfolinas/farmacologia , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Purinas/farmacologia , Transdução de Sinais , Fuso Acromático/metabolismo
14.
J Biochem ; 151(4): 361-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22383538

RESUMO

The chromosomal passenger complex (CPC) senses tension defects at the kinetochore to activate the spindle assembly checkpoint, and helps to position the cleavage furrow. The CPC, consisting of INCENP, Survivin, Borealin and Aurora B localizes to the inner centromere at metaphase and re-localizes to the spindle midzone at anaphase; several CPC functions are regulated by post-translational modification. Borealin is phosphorylated at multiple sites and phosphorylation at S219 causes Borealin to migrate more slowly upon electrophoresis. Here we find that Cdk1 can induce a mobility shift of Borealin, suggesting that S219 phosphorylation is under Cdk1 control. However, Cdk1 is inefficient at phosphorylating purified Borealin in vitro. A yeast orthologue of Borealin, Npl1, is dephosphorylated by the phosphatase Cdc14. We find no difference in the mobility shift of Borealin in human cells lacking either Cdc14A or Cdc14B. In contrast, the phosphatase inhibitor okadaic acid does delay the dephosphorylation of Borealin as cells exit mitosis. The proteasome inhibitor MG132 reduces Borealin phosphorylation in mitosis and increases the steady-state level of Borealin, especially in mutants lacking the C-terminus. However, a second, structurally unrelated proteasome inhibitor, lactacystin did not up-regulate Borealin. These results suggest that the effect of MG132 on Borealin is due to the inhibition of an intracellular protease other than the proteasome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Leupeptinas/farmacologia , Ácido Okadáico/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Inibidores de Proteassoma , Processamento de Proteína Pós-Traducional , Proteólise/efeitos dos fármacos , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Substituição de Aminoácidos , Proteína Quinase CDC2/química , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Expressão Gênica , Células HeLa , Humanos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Transporte Proteico , Ubiquitina/metabolismo
15.
J Cell Sci ; 124(Pt 17): 2976-87, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21878504

RESUMO

Tumor cells are commonly aneuploid, a condition contributing to cancer progression and drug resistance. Understanding how chromatids are linked and separated at the appropriate time will help uncover the basis of aneuploidy and will shed light on the behavior of tumor cells. Cohesion of sister chromatids is maintained by the multi-protein complex cohesin, consisting of Smc1, Smc3, Scc1 and Scc3. Sororin associates with the cohesin complex and regulates the segregation of sister chromatids. Sororin is phosphorylated in mitosis; however, the role of this modification is unclear. Here we show that mutation of potential cyclin-dependent kinase 1 (Cdk1) phosphorylation sites leaves sororin stranded on chromosomes and bound to cohesin throughout mitosis. Sororin can be precipitated from cell lysates with DNA-cellulose, and only the hypophosphorylated form of sororin shows this association. These results suggest that phosphorylation of sororin causes its release from chromatin in mitosis. Also, the hypophosphorylated form of sororin increases cohesion between sister chromatids, suggesting that phosphorylation of sororin by Cdk1 influences sister chromatid cohesion. Finally, phosphorylation-deficient sororin can alleviate the mitotic block that occurs upon knockdown of endogenous sororin. This mitotic block is abolished by ZM447439, an Aurora kinase inhibitor, suggesting that prematurely separated sister chromatids activate the spindle assembly checkpoint through an Aurora kinase-dependent pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteína Quinase CDC2/genética , Cromátides/enzimologia , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Mitose/fisiologia , Mutagênese Sítio-Dirigida , Fosforilação , Troca de Cromátide Irmã , Transfecção , Coesinas
16.
Mol Cancer Ther ; 8(6): 1646-54, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19509263

RESUMO

Cell death induced by agents that disrupt microtubules can kill cells by inducing a prolonged mitotic block. This mitotic block is dependent on the spindle assembly checkpoint, a surveillance system that ensures the bipolar attachment of chromosomes to the mitotic spindle before the onset of anaphase. Under some conditions, the spindle assembly checkpoint can become weakened, allowing cells to exit mitosis despite the presence of chromosomes that are not properly attached to the mitotic spindle. Here, we use an Aurora kinase inhibitor to drive mitotic exit and test the effect of mitotic arrest length on death in the subsequent interphase. Cells that are blocked in mitosis for >15 h die shortly after exiting from mitosis, whereas cells that exit after being blocked for <15 h show variable fates, with some living for days after exiting mitosis. Cells blocked in mitosis by either Taxol or epothilone B are acutely sensitive to the death ligand tumor necrosis factor-related apoptosis-inducing ligand, suggesting that prolonged mitosis allows the gradual accumulation of internal death signals, rendering cells hypersensitive to additional prodeath cues. Death under these conditions is initiated while cyclin B1 is still present, indicating that cells are in mitosis. Our experiments suggest that there is a point of no return during prolonged mitotic block after which mitotic exit can no longer block death.


Assuntos
Epotilonas/farmacologia , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Benzamidas/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina B1 , Imunofluorescência , Fase G1 , Células HeLa , Humanos , Nocodazol/farmacologia , Quinazolinas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores de Tempo
17.
J Cell Biochem ; 106(1): 33-41, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19009561

RESUMO

Activating ras mutations are frequently found in malignant tumors of the pancreas, colon, lung and other tissues. RAS activates a number of downstream pathways that ultimately cause cellular transformation. Several recent studies suggested that one of those pathways involves Aurora kinases. Overexpression of Aurora-B kinase can augment transformation by oncogenic RAS, however the mechanism was not determined. The cooperative effect of high levels of Aurora kinase is important since this kinase is frequently overexpressed in human tumors. We have used two Aurora kinase inhibitors to test their effect on RAS signaling. We find that these inhibitors have no effect on the phosphorylation of MEK1/2 or MAPK in response to RAS. Furthermore, inhibiting Aurora kinases in human cancer cells with or without activated RAS did not change the length of the cell cycle nor induce apoptosis suggesting that these kinases do not play a direct role in these key cellular responses to activated RAS. Overexpression of Aurora B can cause cells to become polyploid. Also, inducing polyploidy with cytochalasin D was reported to induce neoplastic transformation, suggesting that Aurora overexpression may cooperate with RAS indirectly by inducing polyploidy. We find that inducing polyploidy with cytochalasin D or blebbistatin does not enhance transformation by oncogenic RAS. Our observations argue against a direct role for Aurora kinases in the RAS-MAPK pathway, and suggest that the polyploid state does not enhance transformation by RAS.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Benzamidas/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células NIH 3T3 , Fosforilação , Poliploidia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinazolinas/farmacologia , Ratos , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA