RESUMO
Temperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future.
Assuntos
Proteínas de Plantas , Fatores de Transcrição , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Produtos Agrícolas/genética , Temperatura Baixa , Resposta ao Choque FrioRESUMO
Pseudomonas syringae MUP20 was isolated from Western Australian frost-damaged wheat. The MUP20 complete genome contained a 6,045,198-bp single circular chromosome with a GC content of 59.03%. IMG/M genome annotation identified 5,245 protein-coding genes, 1 of which encoded an ice nucleation protein containing 20 occurrences of a highly repetitive PF00818 domain.
RESUMO
The genome of Pseudomonas syringae MUP32, which was isolated from frost-damaged pea in New South Wales, Australia, is tripartite and contains a circular chromosome (6,032,644 bp) and two plasmids (61,675 and 54,993 bp). IMG/M genome annotation identified 5,370 protein-coding genes, one of which encoded an ice-nucleation protein with 19 repetitive PF00818 domains.
RESUMO
Pseudomonas syringae MUP17 was isolated from Western Australian frost-damaged barley. The MUP17 complete genome contained a 5,850,185-bp single circular chromosome with a GC content of 59.12%. IMG/M genome annotation identified 5,012 protein-coding genes, 1 of which encoded an ice-nucleation protein containing 19 occurrences of a highly repetitive PF00818 domain.
RESUMO
Members of the Mesorhizobium genus are soil bacteria that often form nitrogen-fixing symbioses with legumes. Most characterised Mesorhizobium spp. genomes are ~8 Mb in size and harbour extensive pangenomes including large integrative and conjugative elements (ICEs) carrying genes required for symbiosis (ICESyms). Here, we document and compare the conjugative mobilome of 41 complete Mesorhizobium genomes. We delineated 56 ICEs and 24 integrative and mobilizable elements (IMEs) collectively occupying 16 distinct integration sites, along with 24 plasmids. We also demonstrated horizontal transfer of the largest (853,775 bp) documented ICE, the tripartite ICEMspSymAA22. The conjugation systems of all identified ICEs and several plasmids were related to those of the paradigm ICESym ICEMlSymR7A, with each carrying conserved genes for conjugative pilus formation (trb), excision (rdfS), DNA transfer (rlxS) and regulation (fseA). ICESyms have likely evolved from a common ancestor, despite occupying a variety of distinct integration sites and specifying symbiosis with diverse legumes. We found extensive evidence for recombination between ICEs and particularly ICESyms, which all uniquely lack the conjugation entry-exclusion factor gene trbK. Frequent duplication, replacement and pseudogenization of genes for quorum-sensing-mediated activation and antiactivation of ICE transfer suggests ICE transfer regulation is constantly evolving. Pangenome-wide association analysis of the ICE identified genes potentially involved in symbiosis, rhizosphere colonisation and/or adaptation to distinct legume hosts. In summary, the Mesorhizobium genus has accumulated a large and dynamic pangenome that evolves through ongoing horizontal gene transfer of large conjugative elements related to ICEMlSymR7A.
Assuntos
Sequências Repetitivas Dispersas , Mesorhizobium/genética , Proteínas de Bactérias/genética , Conjugação Genética , Elementos de DNA Transponíveis , Evolução Molecular , Fabaceae , Transferência Genética Horizontal , Fixação de Nitrogênio , Plasmídeos , Percepção de Quorum , Recombinação Genética , Simbiose/genéticaRESUMO
Integrative and conjugative elements (ICEs) are generally regarded as regions of contiguous DNA integrated within a bacterial genome that are capable of excision and horizontal transfer via conjugation. We recently characterized a unique group of ICEs present in Mesorhizobium spp., which exist as three entirely separate but inextricably linked chromosomal regions termed α, ß and γ. These regions occupy three different recombinase attachment (att) sites; however, they do not excise independently. Rather, they recombine the host chromosome to form a single contiguous region prior to excision and conjugative transfer. Like the single-part ICE carried by M. loti R7A (ICEMlSymR7A), these "tripartite" ICEs (ICE3s) are widespread throughout the Mesorhizobium genus and enable strains to form nitrogen-fixing symbioses with a variety of legumes. ICE3s have likely evolved following recombination between three separate ancestral integrative elements, however, the persistence of ICE3 structure in diverse mesorhizobia is perplexing due to its seemingly unnecessary complexity. In this study, examination of ICE3s revealed that most symbiosis genes are carried on the large α fragment. Some ICE3-ß and γ regions also carry genes that potentially contribute to the symbiosis, or to persistence in the soil environment, but these regions have been frequently subjected to recombination events including deletions, insertions and recombination with genes located on other integrative elements. Examination of a new ICE3 in M. ciceri Ca181 revealed it has jettisoned the genetic cargo from its ß region and recruited a serine recombinase gene within its γ region, resulting in replacement of one of the three ICE3 integration sites. Overall the recombination loci appear to be the only conserved features of the ß and γ regions, suggesting that the tripartite structure itself provides a selective benefit to the element. We propose the ICE3 structure provides enhanced host range, host stability and resistance to destabilization by tandem insertion of competing integrative elements. Furthermore, we suspect the ICE3 tripartite structure increases the likelihood of gene capture from integrative elements sharing the same attachment sites.
Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Evolução Molecular , Sequência de Bases , Ilhas Genômicas , Mesorhizobium/genética , Plantas/microbiologia , Recombinação Genética , SimbioseRESUMO
Integrative and conjugative elements (ICEs) are ubiquitous mobile genetic elements present as "genomic islands" within bacterial chromosomes. Symbiosis islands are ICEs that convert nonsymbiotic mesorhizobia into symbionts of legumes. Here we report the discovery of symbiosis ICEs that exist as three separate chromosomal regions when integrated in their hosts, but through recombination assemble as a single circular ICE for conjugative transfer. Whole-genome comparisons revealed exconjugants derived from nonsymbiotic mesorhizobia received three separate chromosomal regions from the donor Mesorhizobium ciceri WSM1271. The three regions were each bordered by two nonhomologous integrase attachment (att) sites, which together comprised three homologous pairs of attL and attR sites. Sequential recombination between each attL and attR pair produced corresponding attP and attB sites and joined the three fragments to produce a single circular ICE, ICEMcSym1271 A plasmid carrying the three attP sites was used to recreate the process of tripartite ICE integration and to confirm the role of integrase genes intS, intM, and intG in this process. Nine additional tripartite ICEs were identified in diverse mesorhizobia and transfer was demonstrated for three of them. The transfer of tripartite ICEs to nonsymbiotic mesorhizobia explains the evolution of competitive but suboptimal N2-fixing strains found in Western Australian soils. The unheralded existence of tripartite ICEs raises the possibility that multipartite elements reside in other organisms, but have been overlooked because of their unusual biology. These discoveries reveal mechanisms by which integrases dramatically manipulate bacterial genomes to allow cotransfer of disparate chromosomal regions.