Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 4(7): 5650-5660, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006729

RESUMO

Combining phototherapy with the cancer cell metabolic pathway altering strategies, that is, glucose starvation, would be a promising approach to accomplish high curative efficiency of cancer treatment. Accordingly, herein, we sought to construct a multifunctional biomimetic hybrid nanoreactor by fastening nanozyme AuNPs (glucose oxidase activity) and PtNPs (catalase and peroxidase activity) and photosensitizer Indocyanine green (ICG) onto the polydopamine (PDA) surface (ICG/Au/Pt@PDA-PEG) to attain superior cancer cell killing efficiency though win-win cooperation between starvation therapy, phototherapy, and chemodynamic therapy. The as-synthesized ICG/Au/Pt@PDA-PEG has shown excellent light-to-heat conversion (photothermal therapy) and reactive oxygen species generation (photodynamic therapy) properties upon laser irradiation and also red-shifted ICG absorption (from 780 to 800 nm) and enhanced its photostability. Further, the ICG/Au/Pt@PDA-PEG NRs have reduced the solution glucose concentration and slightly increased solution oxygen levels and also enhanced 3,3',5,5'-tetramethylbenzidine oxidation in the presence of glucose through a cascade of enzymatic activities. The in vitro results demonstrated that the ICG/Au/Pt@PDA-PEG NRs have superior therapeutic efficacy against cancer cells via the cooperative effect between starvation/photo/chemodynamic therapies and not much toxicity to normal cells.


Assuntos
Nanopartículas Metálicas , Neoplasias , Biomimética , Linhagem Celular Tumoral , Glucose , Ouro , Verde de Indocianina/farmacologia , Nanotecnologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA