Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947751

RESUMO

In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists.IMPORTANCE Cytochromes c are essential proteins for respiratory and photosynthetic electron transfer. They are posttranslationally modified by covalent attachment of a heme cofactor. Kinetoplastids include important tropical disease-causing parasites; many aspects of their biology differ from other organisms, including their mammalian or plant hosts. Uniquely, kinetoplastids produce cytochromes c with a type of heme attachment not seen elsewhere in nature and were the only cytochrome c-bearing taxa without evidence of protein machinery to attach heme to the apocytochrome. Using bioinformatics, biochemistry, and molecular genetics, we report how kinetoplastids make their cytochromes c Unexpectedly, they use a highly diverged version of an enzyme used for heme-protein attachment in many eukaryotes. Mutations in the human enzyme lead to genetic disease. Identification of kinetoplastid cytochrome c synthetase, thus, solves an evolutionary unknown, provides a possible target for antiparasite drug development, and an unanticipated resource for studying the mechanistic basis of a human genetic disease.


Assuntos
Citocromos c/genética , Citocromos c/fisiologia , Eucariotos/fisiologia , Biologia Computacional , Leishmania mexicana/genética , Leishmania mexicana/fisiologia , Liases/química , Liases/genética , Liases/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/fisiologia
2.
Methods Mol Biol ; 2116: 449-461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221936

RESUMO

The recent introduction by Carl Zeiss Ltd. of the Airyscan detector module for their LSM880 confocal laser-scanning microscope has enabled routine superresolution microscopy to be combined with the advantages of confocal-based fluorescence imaging. Resulting enhanced spatial resolution in X, Y, and Z provides tractable opportunity to derive new insight into protein localization(s), organelle dynamics, and thence protein function within trypanosomatids or other organisms. Here, we describe methods for preparing slides, cells, and basic microscope setup for fluorescence imaging of trypanosomatids using the LSM-880 with Airyscan platform.


Assuntos
Microscopia Intravital/métodos , Coloração e Rotulagem/métodos , Trypanosomatina/citologia , Citoesqueleto , Flagelos , Corantes Fluorescentes/química , Microscopia Intravital/instrumentação , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA