Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
Basic Res Cardiol ; 118(1): 15, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138037

RESUMO

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with ß-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.


Assuntos
Miócitos Cardíacos , Retículo Sarcoplasmático , Ratos , Masculino , Feminino , Animais , Humanos , Idoso , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caracteres Sexuais , Mitocôndrias/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo
3.
Circ Res ; 130(5): 711-724, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35086342

RESUMO

BACKGROUND: Oxidative stress in cardiac disease promotes proarrhythmic disturbances in Ca2+ homeostasis, impairing luminal Ca2+ regulation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the RyR2 (ryanodine receptor), and increasing channel activity. However, exact mechanisms underlying redox-mediated increase of RyR2 function in cardiac disease remain elusive. We tested whether the oxidoreductase family of proteins that dynamically regulate the oxidative environment within the SR are involved in this process. METHODS: A rat model of hypertrophy induced by thoracic aortic banding (TAB) was used for ex vivo whole heart optical mapping and for Ca2+ and reactive oxygen species imaging in isolated ventricular myocytes (VMs). RESULTS: The SR-targeted reactive oxygen species biosensor ERroGFP showed increased intra-SR oxidation in TAB VMs that was associated with increased expression of Ero1α (endoplasmic reticulum oxidoreductase 1 alpha). Pharmacological (EN460) or genetic Ero1α inhibition normalized SR redox state, increased Ca2+ transient amplitude and SR Ca2+ content, and reduced proarrhythmic spontaneous Ca2+ waves in TAB VMs under ß-adrenergic stimulation (isoproterenol). Ero1α overexpression in Sham VMs had opposite effects. Ero1α inhibition attenuated Ca2+-dependent ventricular tachyarrhythmias in TAB hearts challenged with isoproterenol. Experiments in TAB VMs and human embryonic kidney 293 cells expressing human RyR2 revealed that an Ero1α-mediated increase in SR Ca2+-channel activity involves dissociation of intraluminal protein ERp44 (endoplasmic reticulum protein 44) from the RyR2 complex. Site-directed mutagenesis and molecular dynamics simulations demonstrated a novel redox-sensitive association of ERp44 with RyR2 mediated by intraluminal cysteine 4806. ERp44-RyR2 association in TAB VMs was restored by Ero1α inhibition, but not by reducing agent dithiothreitol, as hypo-oxidation precludes formation of covalent bond between RyR2 and ERp44. CONCLUSIONS: A novel axis of intraluminal interaction between RyR2, ERp44, and Ero1α has been identified. Ero1α inhibition exhibits promising therapeutic potential by stabilizing RyR2-ERp44 complex, thereby reducing spontaneous Ca2+ release and Ca2+-dependent tachyarrhythmias in hypertrophic hearts, without causing hypo-oxidative stress in the SR.


Assuntos
Cardiopatias , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Cardiopatias/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Front Physiol ; 12: 725798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512394

RESUMO

Muscarinic receptors expressed in cardiac myocytes play a critical role in the regulation of heart function by the parasympathetic nervous system. How the structural organization of cardiac myocytes affects the regulation of Ca2+ handling by muscarinic receptors is not well-defined. Using confocal Ca2+ imaging, patch-clamp techniques, and immunocytochemistry, the relationship between t-tubule density and cholinergic regulation of intracellular Ca2+ in normal murine ventricular myocytes and myocytes with acute disruption of the t-tubule system caused by formamide treatment was studied. The inhibitory effect of muscarinic receptor agonist carbachol (CCh, 10 µM) on the amplitude of Ca2+ transients, evoked by field-stimulation in the presence of 100 nM isoproterenol (Iso), a ß-adrenergic agonist, was directly proportional to the level of myocyte detubulation. The timing of the maximal rate of fluorescence increase of fluo-4, a Ca2+-sensitive dye, was used to classify image pixels into the regions functionally coupled or uncoupled to the sarcolemmal Ca2+ influx (ICa). CCh decreased the fraction of coupled regions and suppressed Ca2+ propagation from sarcolemma inside the cell. Formamide treatment reduced ICa density and decreased sarcoplasmic reticulum (SR) Ca2+ content. CCh did not change SR Ca2+ content in Iso-stimulated control and formamide-treated myocytes. CCh inhibited peak ICa recorded in the presence of Iso by ∼20% in both the control and detubulated myocytes. Reducing ICa amplitude up to 40% by changing the voltage step levels from 0 to -25 mV decreased Ca2+ transients in formamide-treated but not in control myocytes in the presence of Iso. CCh inhibited CaMKII activity, whereas CaMKII inhibition with KN93 mimicked the effect of CCh on Ca2+ transients in formamide-treated myocytes. It was concluded that the downregulation of t-tubules coupled with the diminished efficiency of excitation-contraction coupling, increases the sensitivity of Ca2+ release and propagation to muscarinic receptor-mediated inhibition of both ICa and CaMKII activity.

5.
Am J Physiol Heart Circ Physiol ; 321(4): H615-H632, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415186

RESUMO

Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under ß-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.


Assuntos
Arritmias Cardíacas/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Técnicas Biossensoriais , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Microscopia Confocal , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Regulação para Cima , Função Ventricular Esquerda , Remodelação Ventricular
6.
J Mol Cell Cardiol ; 156: 105-113, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857485

RESUMO

Sudden cardiac death due to ventricular tachyarrhythmias remains the major cause of mortality in the world. Heart failure, diabetic cardiomyopathy, old age-related cardiac dysfunction and inherited disorders are associated with enhanced propensity to malignant cardiac arrhythmias. Both defective mitochondrial function and abnormal intracellular Ca2+ homeostasis have been established as the key contributing factors in the pathophysiology and arrhythmogenesis in these conditions. This article reviews current advances in understanding of bidirectional control of ryanodine receptor-mediated sarcoplasmic reticulum Ca2+ release and mitochondrial function, and how defects in crosstalk between these two organelles increase arrhythmic risk in cardiac disease.


Assuntos
Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Mitocôndrias Cardíacas/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Sinalização do Cálcio , Metabolismo Energético , Homeostase , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Terapia de Alvo Molecular , Oxirredução , Retículo Sarcoplasmático/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Basic Res Cardiol ; 115(4): 38, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444920

RESUMO

Cardiac disease is associated with deleterious emission of mitochondrial reactive oxygen species (mito-ROS), as well as enhanced oxidation and activity of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor (RyR2). The transfer of Ca2+ from the SR via RyR2 to mitochondria is thought to play a key role in matching increased metabolic demand during stress. In this study, we investigated whether augmented RyR2 activity results in self-imposed exacerbation of SR Ca2+ leak, via altered SR-mitochondrial Ca2+ transfer and elevated mito-ROS emission. Fluorescent indicators and spatially restricted genetic ROS probes revealed that both pharmacologically and genetically enhanced RyR2 activity, in ventricular myocytes from rats and catecholaminergic polymorphic ventricular tachycardia (CPVT) mice, respectively, resulted in increased ROS emission under ß-adrenergic stimulation. Expression of mitochondrial Ca2+ probe mtRCamp1h revealed diminished net mitochondrial [Ca2+] with enhanced SR Ca2+ leak, accompanied by depolarization of the mitochondrial matrix. While this may serve as a protective mechanism to prevent mitochondrial Ca2+ overload, protection is not complete and enhanced mito-ROS emission resulted in oxidation of RyR2, further amplifying proarrhythmic SR Ca2+ release. Importantly, the effects of augmented RyR2 activity could be attenuated by mitochondrial ROS scavenging, and experiments with dominant-negative paralogs of the mitochondrial Ca2+ uniporter (MCU) supported the hypothesis that SR-mitochondria Ca2+ transfer is essential for the increase in mito-ROS. We conclude that in a process whereby leak begets leak, augmented RyR2 activity modulates mitochondrial Ca2+ handling, promoting mito-ROS emission and driving further channel activity in a proarrhythmic feedback cycle in the diseased heart.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Feminino , Cardiopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
8.
Sci Rep ; 9(1): 13188, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515494

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/biossíntese , Miócitos Cardíacos/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética , Miócitos Cardíacos/citologia
9.
Sci Rep ; 9(1): 10179, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308393

RESUMO

Store-operated Ca2+ entry (SOCE), a major Ca2+ signaling mechanism in non-myocyte cells, has recently emerged as a component of Ca2+ signaling in cardiac myocytes. Though it has been reported to play a role in cardiac arrhythmias and to be upregulated in cardiac disease, little is known about the fundamental properties of cardiac SOCE, its structural underpinnings or effector targets. An even greater question is how SOCE interacts with canonical excitation-contraction coupling (ECC). We undertook a multiscale structural and functional investigation of SOCE in cardiac myocytes from healthy mice (wild type; WT) and from a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). Here we provide the first demonstration of local, transient Ca2+ entry (LoCE) events, which comprise cardiac SOCE. Although infrequent in WT myocytes, LoCEs occurred with greater frequency and amplitude in CPVT myocytes. CPVT myocytes also evidenced characteristic arrhythmogenic spontaneous Ca2+ waves under cholinergic stress, which were effectively prevented by SOCE inhibition. In a surprising finding, we report that both LoCEs and their underlying protein machinery are concentrated at the intercalated disk (ID). Therefore, localization of cardiac SOCE in the ID compartment has important implications for SOCE-mediated signaling, arrhythmogenesis and intercellular mechanical and electrical coupling in health and disease.


Assuntos
Arritmias Cardíacas/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Acoplamento Excitação-Contração , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Proteína ORAI1/metabolismo , Retículo Sarcoplasmático/metabolismo , Molécula 1 de Interação Estromal/metabolismo
10.
J Am Heart Assoc ; 7(10)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720499

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic syndrome characterized by sudden death. There are several genetic forms of CPVT associated with mutations in genes encoding the cardiac ryanodine receptor (RyR2) and its auxiliary proteins including calsequestrin (CASQ2) and calmodulin (CaM). It has been suggested that impairment of the ability of RyR2 to stay closed (ie, refractory) during diastole may be a common mechanism for these diseases. Here, we explore the possibility of engineering CaM variants that normalize abbreviated RyR2 refractoriness for subsequent viral-mediated delivery to alleviate arrhythmias in non-CaM-related CPVT. METHODS AND RESULTS: To that end, we have designed a CaM protein (GSH-M37Q; dubbed as therapeutic CaM or T-CaM) that exhibited a slowed N-terminal Ca dissociation rate and prolonged RyR2 refractoriness in permeabilized myocytes derived from CPVT mice carrying the CASQ2 mutation R33Q. This T-CaM was introduced to the heart of R33Q mice through recombinant adeno-associated viral vector serotype 9. Eight weeks postinfection, we performed confocal microscopy to assess Ca handling and recorded surface ECGs to assess susceptibility to arrhythmias in vivo. During catecholamine stimulation with isoproterenol, T-CaM reduced isoproterenol-promoted diastolic Ca waves in isolated CPVT cardiomyocytes. Importantly, T-CaM exposure abolished ventricular tachycardia in CPVT mice challenged with catecholamines. CONCLUSIONS: Our results suggest that gene transfer of T-CaM by adeno-associated viral vector serotype 9 improves myocyte Ca handling and alleviates arrhythmias in a calsequestrin-associated CPVT model, thus supporting the potential of a CaM-based antiarrhythmic approach as a therapeutic avenue for genetically distinct forms of CPVT.


Assuntos
Calmodulina/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Frequência Cardíaca , Taquicardia Ventricular/terapia , Animais , Sinalização do Cálcio , Calmodulina/biossíntese , Calsequestrina/deficiência , Calsequestrina/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia
12.
Basic Res Cardiol ; 112(4): 44, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28612155

RESUMO

In heart failure (HF), dysregulated cardiac ryanodine receptors (RyR2) contribute to the generation of diastolic Ca2+ waves (DCWs), thereby predisposing adrenergically stressed failing hearts to life-threatening arrhythmias. However, the specific cellular, subcellular, and molecular defects that account for cardiac arrhythmia in HF remain to be elucidated. Patch-clamp techniques and confocal Ca2+ imaging were applied to study spatially defined Ca2+ handling in ventricular myocytes isolated from normal (control) and failing canine hearts. Based on their activation time upon electrical stimulation, Ca2+ release sites were categorized as coupled, located in close proximity to the sarcolemmal Ca2+ channels, and uncoupled, the Ca2+ channel-free non-junctional Ca2+ release units. In control myocytes, stimulation of ß-adrenergic receptors with isoproterenol (Iso) resulted in a preferential increase in Ca2+ spark rate at uncoupled sites. This site-specific effect of Iso was eliminated by the phosphatase inhibitor okadaic acid, which caused similar facilitation of Ca2+ sparks at coupled and uncoupled sites. Iso-challenged HF myocytes exhibited increased predisposition to DCWs compared to control myocytes. In addition, the overall frequency of Ca2+ sparks was increased in HF cells due to preferential stimulation of coupled sites. Furthermore, coupled sites exhibited accelerated recovery from functional refractoriness in HF myocytes compared to control myocytes. Spatially resolved subcellular Ca2+ mapping revealed that DCWs predominantly originated from coupled sites. Inhibition of CaMKII suppressed DCWs and prevented preferential stimulation of coupled sites in Iso-challenged HF myocytes. These results suggest that CaMKII- (and phosphatase)-dependent dysregulation of junctional Ca2+ release sites contributes to Ca2+-dependent arrhythmogenesis in HF.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca , Microdomínios da Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estimulação Cardíaca Artificial , Diástole , Modelos Animais de Doenças , Cães , Feminino , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Potenciais da Membrana , Miócitos Cardíacos/efeitos dos fármacos , Período Refratário Eletrofisiológico , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Sus scrofa , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
13.
JACC Basic Transl Sci ; 1(4): 251-266, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27747307

RESUMO

BACKGROUND: Cardiac arrhythmias are a leading cause of death in the US. Vast majority of these arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with increased levels of circulating catecholamines and involve abnormal impulse formation secondary to aberrant Ca2+ and Na+ handling. However, the mechanistic link between ß-AR stimulation and the subcellular/molecular arrhythmogenic trigger(s) remains elusive. METHODS AND RESULTS: We performed functional and structural studies to assess Ca2+ and Na+ signaling in ventricular myocyte as well as surface electrocardiograms in mouse models of cardiac calsequestrin (CASQ2)-associated CPVT. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) that colocalize with RyR2 and Na+/Ca2+ exchanger (NCX) are a part of the ß-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for the arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves ß-AR-mediated activation of CAMKII subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. CONCLUSION: These data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing ß-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and Nav1.6 in particular can serve as a potential antiarrhythmic therapy.

14.
Hypertension ; 68(5): 1171-1178, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27647848

RESUMO

Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Muscarínicos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Células Cultivadas , Colinérgicos/farmacologia , Modelos Animais de Doenças , Cães , Acoplamento Excitação-Contração/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Sensibilidade e Especificidade
15.
Cardiovasc Res ; 108(2): 299-311, 2015 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-26410369

RESUMO

AIMS: Cardiac calsequestrin (CASQ2) and histidine-rich Ca-binding protein (HRC) are sarcoplasmic reticulum (SR) Ca-binding proteins that regulate SR Ca release in mammalian heart. Deletion of either CASQ2 or HRC results in relatively mild phenotypes characterized by preserved cardiac structure and function, although CASQ2 knockout (KO), or Cnull, shows increased arrhythmia burden under conditions of catecholaminergic stress. We hypothesized that given the apparent overlap of functions of CASQ2 and HRC, simultaneous ablation of both would deteriorate the cardiac phenotype compared with the single knockouts. METHODS AND RESULTS: In contrast to this expectation, double knockout (DKO) mice lacking both CASQ2 and HRC exhibited normal cardiac ejection fraction and ultrastructure. Moreover, the predisposition to catecholamine-dependent arrhythmia that characterizes the Cnull phenotype was alleviated in the DKO mice. At the myocyte level, DKO mice displayed Ca transients of normal amplitude; additionally, the frequency of spontaneous Ca waves and sparks in the presence of isoproterenol were decreased markedly compared with Cnull. Furthermore, restitution of SR Ca release was slowed in DKO myocytes compared with Cnull cells. CONCLUSION: Our results suggest that rather than being functionally redundant, CASQ2 and HRC modulate cardiac ryanodine receptor-mediated (RyR2) Ca release in an opposing manner. In particular, while CASQ2 stabilizes RyR2 rendering it refractory in the diastolic phase, HRC enhances RyR2 activity facilitating RyR2 recovery from refractoriness.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Modelos Animais de Doenças , Ecocardiografia , Isoproterenol , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/metabolismo
16.
J Physiol ; 593(6): 1443-58, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25384790

RESUMO

KEY POINTS: Atrial fibrillation is often initiated and perpetuated by abnormal electrical pulses repetitively originating from regions outside the heart's natural pacemaker. In this study we examined the causal role of abnormal calcium releases from the sarcoplasmic reticulum in producing repetitive electrical discharges in atrial cells and tissues. Calsequestrin2 is a protein that stabilizes the closed state of calcium release channels, i.e. the ryanodine receptors. In the atria from mice predisposed to abnormal calcium releases secondary to the absence of calsequestrin2, we observed abnormal repetitive electrical discharges that may lead to atrial fibrillation. Here, we report a novel pathological rhythm generator. Specifically, abnormal calcium release leads to electrical activation, which in turn results in another abnormal calcium release. This process repeats itself and thus sustains the repetitive electrical discharges. These results suggest that improving the stability of ryanodine receptors might be useful to treat atrial fibrillation. ABSTRACT: Aberrant diastolic calcium (Ca) release due to leaky ryanodine receptors (RyR2s) has been recently associated with atrial fibrillation (AF) and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, it remains unclear how diastolic Ca release contributes to the rising of rapid repetitive focal activity, which is considered as a common AF triggering mechanism. To address this question, we conducted simultaneous voltage/Ca optical mapping in atrial tissue and one-/two-dimensional confocal imaging in atrial tissue and myocytes from wild-type (WT, n = 15) and CPVT mice lacking calsequestrin 2 (Casq2(-/-), n = 45), which promotes diastolic Ca release. During ß-adrenergic stimulation (100 nM isoproterenol), only Casq2(-/-) atrial myocytes showed pacing-induced self-sustained repetitive activity (31 ± 21 s vs. none in WT). Importantly, in atrial tissue, this repetitive activity could translate to Ca-dependent focal arrhythmia. Ectopic action potential (AP) firing during repetitive activity occurred only when diastolic Ca release achieved a sufficient level of synchronization. The AP, in turn, synchronized subsequent diastolic Ca release by temporally aligning multiple sources of Ca waves both within individual myocytes and throughout the atrial tissue. This alternating interplay between AP and diastolic Ca release perpetuates the self-sustaining repetitive activity. In fact, pharmacological disruption of synchronized diastolic Ca release (by ryanodine) prevented aberrant APs; and vice versa, the inhibition of AP (by TTX or 0 Na, 0 Ca solution) de-synchronized diastolic Ca release. Taken together, these results suggest that a cyclical interaction between synchronized diastolic Ca release and AP forms a pathological rhythm generator that is involved in Ca-dependent atrial arrhythmias in CPVT.


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio , Calsequestrina/genética , Potenciais da Membrana , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Células Cultivadas , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Periodicidade
17.
Cardiovasc Res ; 106(1): 143-52, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25538156

RESUMO

AIMS: Sudden death resulting from cardiac arrhythmias is the most common consequence of cardiac disease. Certain arrhythmias caused by abnormal impulse formation including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with delayed afterdepolarizations resulting from diastolic Ca2+ release (DCR) from the sarcoplasmic reticulum (SR). Despite high response of CPVT to agents directly affecting Ca2+ cycling, the incidence of refractory cases is still significant. Surprisingly, these patients often respond to treatment with Na+ channel blockers. However, the relationship between Na+ influx and disturbances in Ca2+ handling immediately preceding arrhythmias in CPVT remains poorly understood and is the object of this study. METHODS AND RESULTS: We performed optical Ca2+ and membrane potential imaging in ventricular myocytes and intact cardiac muscles as well as surface ECGs on a CPVT mouse model with a mutation in cardiac calsequestrin. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) colocalize with ryanodine receptor Ca2+ release channels (RyR2). Disruption of the crosstalk between nNav and RyR2 by nNav blockade with riluzole reduced and also desynchronized DCR in isolated cardiomyocytes and in intact cardiac tissue. Such desynchronization of DCR on cellular and tissue level translated into decreased arrhythmias in CPVT mice. CONCLUSIONS: Thus, our study offers the first evidence that nNav contribute to arrhythmogenic DCR, thereby providing a conceptual basis for mechanism-based antiarrhythmic therapy.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Neurônios/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacocinética , Taquicardia Ventricular/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Calsequestrina/genética , Diástole/fisiologia , Modelos Animais de Doenças , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neurônios/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatologia
18.
Eur Heart J ; 36(11): 686-97, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24216388

RESUMO

AIMS: Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. METHODS AND RESULTS: In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca(2+) cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2(-/-)) mice. Casq2(-/-) mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca(2+) cycling, including abnormal Ca(2+) release, periods of significantly elevated diastolic Ca(2+) levels leading to pauses and unstable pacemaker rate. Importantly, Ca(2+) cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca(2+) transient upstrokes throughout the atrial pacemaker complex. CONCLUSIONS: Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca(2+) release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients.


Assuntos
Fibrilação Atrial/genética , Bradicardia/genética , Calsequestrina/genética , Deleção de Genes , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/fisiologia , Potenciais de Ação/fisiologia , Animais , Função Atrial/genética , Cálcio/metabolismo , Calsequestrina/deficiência , Cardiomegalia/genética , Fibrose/genética , Técnicas de Inativação de Genes , Camundongos Transgênicos , Nó Sinoatrial/patologia
19.
J Cardiovasc Electrophysiol ; 25(3): 299-306, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256556

RESUMO

INTRODUCTION: Bisphosphonates, including ibandronate, are used in the prevention and treatment of osteoporosis. METHODS AND RESULTS: We report a case of suspected ibandronate-associated arrhythmia, following a single dose of ibandronate in a 55-year-old female. ECG at presentation revealed frequent ectopy and QT/QTc interval prolongation; at follow-up 9 months later the QT/QTc intervals were normalized. Proarrhythmic potential of ibandronate was assessed with a combination of in vivo and in vitro approaches in canines and canine ventricular myocytes. We observed late onset in vivo repolarization instability after ibandronate treatment. Myocytes superfused with ibandronate exhibited action potential duration (APD) prolongation and variability, increased early afterdepolarizations (EADs) and reduced Ito (P < 0.05), with no change in IKr . Ibandronate-induced APD changes and EADs were prevented by inhibition of intracellular calcium cycling. Ibandronate increased sarcoplasmic reticulum calcium load; during washout there was an increase in calcium spark frequency and spontaneous calcium waves. Computational modeling was used to examine the observed effects of ibandronate. While reductions in Ito alone had modest effects on APD, when combined with altered RyR inactivation kinetics, the model predicted effects on APD and SR Ca(2+) load consistent with observed experimental results. CONCLUSION: Ibandronate may increase the susceptibility to ventricular ectopy and arrhythmias. Collectively these data suggest that reduced Ito combined with abnormal RyR calcium handling may result in a previously unrecognized form of drug-induced proarrhythmia.


Assuntos
Conservadores da Densidade Óssea/efeitos adversos , Difosfonatos/efeitos adversos , Fibrilação Ventricular/induzido quimicamente , Fibrilação Ventricular/diagnóstico , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Cães , Feminino , Humanos , Ácido Ibandrônico , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Fibrilação Ventricular/fisiopatologia
20.
PLoS One ; 8(10): e78414, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205228

RESUMO

It has been proposed that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce the risk of ventricular arrhythmias in post-MI patients. Abnormal Ca(2+) handling has been implicated in the genesis of post-MI ventricular arrhythmias. Therefore, we tested the hypothesis that dietary n-3 PUFAs alter the vulnerability of ventricular myocytes to cellular arrhythmia by stabilizing intracellular Ca(2+) cycling. To test this hypothesis, we used a canine model of post-MI ventricular fibrillation (VF) and assigned the animals to either placebo (1 g/day corn oil) or n-3 PUFAs (1-4 g/day) groups. Using Ca(2+) imaging techniques, we examined the intracellular Ca(2+) handling in myocytes isolated from post-MI hearts resistant (VF-) and susceptible (VF+) to VF. Frequency of occurrence of diastolic Ca(2+) waves (DCWs) in VF+ myocytes from placebo group was significantly higher than in placebo-treated VF- myocytes. n-3 PUFA treatment did not decrease frequency of DCWs in VF+ myocytes. In contrast, VF- myocytes from the n-3 PUFA group had a significantly higher frequency of DCWs than myocytes from the placebo group. In addition, n-3 PUFA treatment increased beat-to-beat alterations in the amplitude of Ca(2+) transients (Ca(2+) alternans) in VF- myocytes. These n-3 PUFAs effects in VF- myocytes were associated with an increased Ca(2+) spark frequency and reduced sarcoplasmic reticulum Ca(2+) content, indicative of increased activity of ryanodine receptors. Thus, dietary n-3 PUFAs do not alleviate intracellular Ca(2+) cycling remodeling in myocytes isolated from post-MI VF+ hearts. Furthermore, dietary n-3 PUFAs increase vulnerability of ventricular myocytes to cellular arrhythmia in post-MI VF- hearts by destabilizing intracellular Ca(2+) handling.


Assuntos
Arritmias Cardíacas/prevenção & controle , Cálcio/metabolismo , Morte Súbita Cardíaca/patologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Dieta/métodos , Cães , Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA