Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(30): 15925-15934, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286771

RESUMO

In situ NMR spectroscopy is a powerful technique to investigate charge storage mechanisms in carbon-based supercapacitors thanks to its ability to distinguish ionic and molecular species adsorbed in the porous electrodes from those in the bulk electrolyte. The NMR peak corresponding to the adsorbed species shows a clear change of chemical shift as the applied potential difference is varied. This variation in chemical shift is thought to originate from a combination of ion reorganisation in the pores and changes in ring current shifts due to the changes of electronic density in the carbon. While previous Density Functional Theory calculations suggested that the electronic density has a large effect, the relative contributions of these two effects is challenging to untangle. Here, we use mesoscopic simulations to simulate NMR spectra and investigate the relative importance of ion reorganisation and ring currents on the resulting chemical shift. The model is able to predict chemical shifts in good agreement with NMR experiments and indicates that the ring currents are the dominant contribution. A thorough analysis of a specific electrode/electrolyte combination for which detailed NMR experiments have been reported allows us to confirm that local ion reorganisation has a very limited effect but the relative quantities of ions in pores of different sizes, which can change upon charging/discharging, can lead to a significant effect. Our findings suggest that in situ NMR spectra of supercapacitors may provide insights into the electronic structure of carbon materials in the future.

2.
ACS Appl Mater Interfaces ; 12(1): 1789-1798, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31805764

RESUMO

We use molecular simulations of an ionic liquid in contact with a range of nanoporous carbons to investigate correlations between the ion size, pore size, pore topology, and properties of the adsorbed ions. We show that diffusion coefficients increase with the anion size and, surprisingly, with the quantity of adsorbed ions. Both findings are interpreted in terms of confinement: when the in-pore population increases, additional ions are located in less-confined sites and diffuse faster. Simulations in which the pores are enlarged while keeping the topology constant support these observations. The interpretation of properties across structures is more challenging. An interesting point is that smaller pores do not necessarily lead to a larger confinement. In this work, the highest degrees of confinement are observed for intermediate pore sizes. We also show a correlation between the quantity of adsorbed ions and the ratio between the maximum pore diameter and the pore limiting diameter.

3.
Phys Chem Chem Phys ; 20(3): 1993-2008, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29299558

RESUMO

With the help of time-dependent density functional theory coupled to an implicit solvation scheme (the polarisable continuum model), we have investigated the singlet-singlet Excitation Energy Transfer (EET) process in a panel of large BODIPY-macrocycle dyads. We have first considered different strategies to compute the electronic coupling in a representative BODIPY-zinc porphyrin assembly and, next evaluated the performances of the chosen computational protocol on several BODIPY-porphyrinoid molecular architectures for which the EET rate constants have been experimentally measured. This step showed the robustness of our approach, which is able to reproduce the magnitude of the measured rate constants in most cases. We have finally applied the validated methodology on newly designed dyads combining a BODIPY unit and an azacalixphyrin macrocycle, a recently synthesised porphyrin analogue that displays exceptional optical properties. This work allowed us to propose new molecular architectures presenting improved properties and also to highlight the interest of using azacalixphyrin as a building block in molecular light-harvesting antennas.

4.
Chemistry ; 24(10): 2457-2465, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29178609

RESUMO

RhL2 complexes of phosphonate-derivatized 2,2'-bipyridine (bpy) ligands L were immobilized on titanium oxide particles generated in situ. Depending on the structure of the bipy ligand-number of tethers (1 or 2) to which the phosphonate end groups are attached and their location on the 2,2'-bipyridine backbone (4,4'-, 5,5'-, or 6,6'-positions)-the resulting supported catalysts showed comparable chemoselectivity but different kinetics for the hydrogenation of 6-methyl-5-hepten-2-one under hydrogen pressure. Characterization of the six supported catalysts suggested that the intrinsic geometry of each of the phosphonate-derivatized 2,2'-bipyridines leads to supported catalysts with different microstructures and different arrangements of the RhL2 species at the surface of the solid, which thereby affect their reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA