RESUMO
BACKGROUND: Adiposity shows opposing associations with mortality within COVID-19 versus non-COVID-19 respiratory conditions. We assessed the likely causality of adiposity for mortality among intensive care patients with COVID-19 versus non-COVID-19 by examining the consistency of associations across temporal and geographical contexts where biases vary. METHODS: We used data from 297 intensive care units (ICUs) in England, Wales, and Northern Ireland (Intensive Care National Audit and Research Centre Case Mix Programme). We examined associations of body mass index (BMI) with 30-day mortality, overall and by date and region of ICU admission, among patients admitted with COVID-19 (N = 34,701; February 2020-August 2021) and non-COVID-19 respiratory conditions (N = 25,205; February 2018-August 2019). RESULTS: Compared with non-COVID-19 patients, COVID-19 patients were younger, less often of a white ethnic group, and more often with extreme obesity. COVID-19 patients had fewer comorbidities but higher mortality. Socio-demographic and comorbidity factors and their associations with BMI and mortality varied more by date than region of ICU admission. Among COVID-19 patients, higher BMI was associated with excess mortality (hazard ratio (HR) per standard deviation (SD) = 1.05; 95% CI = 1.03-1.07). This was evident only for extreme obesity and only during February-April 2020 (HR = 1.52, 95% CI = 1.30-1.77 vs. recommended weight); this weakened thereafter. Among non-COVID-19 patients, higher BMI was associated with lower mortality (HR per SD = 0.83; 95% CI = 0.81-0.86), seen across all overweight/obesity groups and across dates and regions, albeit with a magnitude that varied over time. CONCLUSIONS: Obesity is associated with higher mortality among COVID-19 patients, but lower mortality among non-COVID-19 respiratory patients. These associations appear vulnerable to confounding/selection bias in both patient groups, questioning the existence or stability of causal effects.
Assuntos
Adiposidade , Índice de Massa Corporal , COVID-19 , Unidades de Terapia Intensiva , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Reino Unido/epidemiologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Obesidade/mortalidade , Obesidade/complicações , Obesidade/epidemiologia , SARS-CoV-2 , Adulto , Comorbidade , Cuidados Críticos , Idoso de 80 Anos ou mais , Mortalidade HospitalarRESUMO
BACKGROUND: Pubertal timing is heritable, varies between individuals, and has implications for life-course health. There are many different indicators of pubertal timing, and how they relate to each other is unclear. Our aim was to quantitatively compare nine indicators of pubertal timing. METHODS: We used data from questionnaires and height, weight, and bone measurements from ages 7-17 y in a population-based cohort of 4267 females and 4251 males to compare nine growth and development-based indicators of pubertal timing. We summarise age of each indicator, their phenotypic and genetic correlations, and how they relate to established genetic risk score (GRS) for puberty timing, and phenotypic childhood body composition measures. RESULTS: We show that pubic hair in males (mean: 12.6 y) and breasts in females (11.5 y) are early indicators of puberty, and voice breaking (14.2 y) and menarche (12.7 y) are late indicators however, there is substantial variation between individuals in pubertal age. All indicators show evidence of positive phenotypic intercorrelations (e.g., r = 0.49: male genitalia and pubic hair ages), and positive genetic intercorrelations. An age at menarche GRS positively associates with all other pubertal age indicators (e.g., difference in female age at peak height velocity per SD higher GRS: 0.24 y, 95%CI: 0.21 to 0.26), as does an age at voice breaking GRS (e.g., difference in age at male axillary hair: 0.11 y, 0.07 to 0.15). Higher childhood fat mass and lean mass associated with earlier puberty timing. CONCLUSIONS: Our findings provide insights into the measurements of the timing of pubertal growth and development and illustrate value of various pubertal timing indicators in life-course research.
Age of puberty varies between individuals and can affect a person's future health. We obtained information from 8500 British children as they progressed through puberty. We compared nine measures of pubertal timing. We found that the appearance of pubic hair in boys and breasts in girls are early indicators of puberty, and that voice change and onset of menstruation are late indicators. However, there was also substantial variability between individuals in age of puberty. All puberty measures were correlated with each other and related to an individual's adult body mass index, as well as to their childhood muscle and fat mass. Our findings are useful information for health care workers and researchers who are interested in assessing and studying puberty.
RESUMO
Mechanisms through which most known Alzheimer's disease (AD) loci operate to increase AD risk remain unclear. Although Apolipoprotein E (APOE) is known to regulate lipid homeostasis, the effects of broader AD genetic liability on non-lipid metabolites remain unknown, and the earliest ages at which metabolic perturbations occur and how these change over time are yet to be elucidated. We examined the effects of AD genetic liability on the plasma metabolome across the life course. Using a reverse Mendelian randomization framework in two population-based cohorts [Avon Longitudinal Study of Parents and Children (ALSPAC, n = 5648) and UK Biobank (n ≤ 118,466)], we estimated the effects of genetic liability to AD on 229 plasma metabolites, at seven different life stages, spanning 8 to 73 years. We also compared the specific effects of APOE ε4 and APOE ε2 carriage on metabolites. In ALSPAC, AD genetic liability demonstrated the strongest positive associations with cholesterol-related traits, with similar magnitudes of association observed across all age groups including in childhood. In UK Biobank, the effect of AD liability on several lipid traits decreased with age. Fatty acid metabolites demonstrated positive associations with AD liability in both cohorts, though with smaller magnitudes than lipid traits. Sensitivity analyses indicated that observed effects are largely driven by the strongest AD instrument, APOE, with many contrasting effects observed on lipids and fatty acids for both ε4 and ε2 carriage. Our findings indicate pronounced effects of the ε4 and ε2 genetic variants on both pro- and anti-atherogenic lipid traits and sphingomyelins, which begin in childhood and either persist into later life or appear to change dynamically.
Assuntos
Doença de Alzheimer , Criança , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Genótipo , Estudos Longitudinais , Acontecimentos que Mudam a Vida , Apolipoproteínas E/genética , Apolipoproteína E4/genéticaRESUMO
BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.
Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Adulto , Adolescente , Humanos , Criança , Pré-Escolar , Puberdade/genética , Fenótipo , Estatura/genética , Avaliação de Resultados em Cuidados de Saúde , Estudos LongitudinaisRESUMO
Background: Recognizing the early signs of cancer risk is vital for informing prevention, early detection, and survival. Methods: To investigate whether changes in circulating metabolites characterize the early stages of colorectal cancer (CRC) development, we examined the associations between a genetic risk score (GRS) associated with CRC liability (72 single-nucleotide polymorphisms) and 231 circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon Longitudinal Study of Parents and Children (N = 6221). Linear regression models were applied to examine the associations between genetic liability to CRC and circulating metabolites measured in the same individuals at age 8 y, 16 y, 18 y, and 25 y. Results: The GRS for CRC was associated with up to 28% of the circulating metabolites at FDR-P < 0.05 across all time points, particularly with higher fatty acids and very-low- and low-density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites measured in a random subset of UK Biobank participants (N = 118,466, median age 58 y) revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most strongly associated with higher CRC risk. Conclusions: These analyses suggest that higher genetic liability to CRC can cause early alterations in systemic metabolism and suggest that fatty acids may play an important role in CRC development. Funding: This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, the Wellcome Trust, the Medical Research Council, Diabetes UK, the University of Bristol NIHR Biomedical Research Centre, and Cancer Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol - http://www.bristol.ac.uk/acrc/.
Colorectal cancer, or bowel cancer, is the fourth most common cause of death from cancer worldwide. Understanding how the cancer develops and recognizing early signs is essential, as people who receive treatment early on have higher survival rates. One way to boost early detection and disease survival rates is through identifying early colorectal cancer biomarkers. For example, metabolites produced when cells process nutrients have been shown to play a role in the development of colon cancer. Certain metabolites could therefore serve as biomarkers, which can be detected in routine blood tests. But first, scientists need to identify the exact metabolic processes involved in cancer development. Bull, Hazelwood et al. show that fat metabolites during early adulthood may help predict colorectal cancer risk. In the experiments, the team assessed the link between an individual's genetic risk for developing colorectal cancer and metabolites in their blood. By looking at data from over 6,000 individuals living in the UK, followed from early life into adulthood, they found higher fatty acid and low-density lipoprotein levels in young adults at risk of colorectal cancer. However, the results could not be replicated in a separate cohort study of middle-aged adults. Bull, Hazelwood et al. noted that many individuals in this older age group use fat-targeting drugs called statins, which may have obscured this connection. The study of Bull, Hazelwood et al. shows that colorectal cancer risk indicators may be present from adolescence to around 40 years, before most individuals are diagnosed. The results suggest this may be a window for early detection and preventive interventions. It also highlights that differences in fat metabolism, possibly linked to genetic differences, may underlie colorectal cancer risk. More studies are needed to better understand how and whether interventions targeting fat levels may help prevent colorectal cancer development.
Assuntos
Neoplasias Colorretais , Estratificação de Risco Genético , Análise da Randomização Mendeliana , Criança , Humanos , Pessoa de Meia-Idade , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ácidos Graxos , Estudos Longitudinais , Adolescente , AdultoRESUMO
BACKGROUND: Socioeconomic inequalities in cardiovascular disease risk begin early in life and are more pronounced in females than males later in life. Causal atherogenic traits explaining this are not well understood. We explored sex-specific associations between childhood socioeconomic position (SEP) and molecular measures of systemic metabolism across early life. METHODS: Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC), a population-based birth cohort in southwest England. Pregnant women with an expected delivery date between 1991 and 1992 were invited to participate. Maternal education was the primary indicator of SEP. Concentrations of 148 metabolic traits from targeted metabolomics (nuclear magnetic resonance spectroscopy) from research clinics at ages 7, 15, 18 and 25 years were analysed. The sex-specific slope index of inequality (SII) in trajectories of metabolic traits was estimated using multilevel models. FINDINGS: Total number of participants included was 6537 (12,543 repeated measures). Lower maternal education was associated with more adverse levels of several atherogenic lipids and key metabolic traits among females at age 7 years, but not males. For instance, SII for very small very-low-density lipoprotein (VLDL) concentrations was 0.16SD (95% CI: 0.01, 0.30) among females and -0.02SD (95% CI: -0.16, 0.13) among males. Between 7 and 25 years, inequalities widened among females and emerged among males particularly for VLDL particle concentrations, apolipoprotein-B concentrations, and inflammatory glycoprotein acetyls. For instance, at 25 years, SII for very small VLDL concentrations was 0.36SD (95% CI: 0.20, 0.52) and 0.22SD (95% CI: 0.04, 0.40) among females and males respectively. INTERPRETATION: Prevention of socioeconomic inequalities in cardiovascular disease risk requires a life course approach beginning at the earliest opportunity, especially among females. FUNDING: The UK Medical Research Council and Wellcome (grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). KON is supported by a Health Research Board (HRB) of Ireland Investigator Led Award (ILP-PHR-2022-008). JB, GDS and KT work in a unit funded by the UK MRC (MC_UU_00011/1 and MC UU 00011/3) and the University of Bristol. OR is supported by a UKRI Future Leaders Fellowship (MR/S03532X/1). These funding sources had no role in the design and conduct of this study. This publication is the work of the authors and KON will serve as guarantor for the contents of this paper.
Assuntos
Doenças Cardiovasculares , Masculino , Humanos , Criança , Feminino , Gravidez , Estudos Longitudinais , Estudos de Coortes , Estudos Prospectivos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Fatores SocioeconômicosRESUMO
Background: Recognizing the early signs of cancer risk is vital for informing prevention, early detection, and survival. Methods: To investigate whether changes in circulating metabolites characterise the early stages of colorectal cancer (CRC) development, we examined associations between a genetic risk score (GRS) associated with CRC liability (72 single nucleotide polymorphisms) and 231 circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon Longitudinal Study of Parents and Children (N=6,221). Linear regression models were applied to examine associations between genetic liability to colorectal cancer and circulating metabolites measured in the same individuals at age 8, 16, 18 and 25 years. Results: The GRS for CRC was associated with up to 28% of the circulating metabolites at FDR-P<0.05 across all time points, particularly with higher fatty acids and very-low- and low-density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites measured in a random subset of UK Biobank participants (N=118,466, median age 58y) revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most strongly associated with higher CRC risk. Conclusions: These analyses suggest that higher genetic liability to CRC can cause early alterations in systemic metabolism, and suggest that fatty acids may play an important role in CRC development. Funding: This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, the Wellcome Trust, the Medical Research Council, Diabetes UK, the University of Bristol NIHR Biomedical Research Centre, and Cancer Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol - http://www.bristol.ac.uk/acrc/.
RESUMO
BACKGROUND/OBJECTIVES: Different genetic variants are associated with larger body size in childhood vs adulthood. Whether and when these variants predominantly influence adiposity are unknown. We examined how genetic variants influence total body fat and total lean mass trajectories. METHODS: Data were from the Avon Longitudinal Study of Parents and Children birth cohort (N = 6926). Sex-specific genetic risk scores (GRS) for childhood and adulthood body size were generated, and dual-energy X-ray absorptiometry scans measured body fat and lean mass six times between the ages of 9 and 25 years. Multilevel linear spline models examined associations of GRS with fat and lean mass trajectories. RESULTS: In males, the sex-specific childhood and adulthood GRS were associated with similar differences in fat mass from 9 to 18 years; 8.3% [95% confidence interval (CI) 5.1, 11.6] and 7.5% (95% CI 4.3, 10.8) higher fat mass at 18 years per standard deviation (SD) higher childhood and adulthood GRS, respectively. In males, the sex-combined childhood GRS had stronger effects at ages 9 to 15 than the sex-combined adulthood GRS. In females, associations for the sex-specific childhood GRS were almost 2-fold stronger than the adulthood GRS from 9 to 18 years: 10.5% (95% CI 8.5, 12.4) higher fat mass at 9 years per SD higher childhood GRS compared with 5.1% (95% CI 3.2, 6.9) per-SD higher adulthood GRS. In females, the sex-combined GRS had similar effects, with slightly larger effect estimates. Lean mass effect sizes were much smaller. CONCLUSIONS: Genetic variants for body size are more strongly associated with adiposity than with lean mass. Sex-combined childhood variants are more strongly associated with increased adiposity until early adulthood. This may inform future studies that use genetics to investigate the causes and impact of adiposity at different life stages.
Assuntos
Predisposição Genética para Doença , Acontecimentos que Mudam a Vida , Masculino , Criança , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Estudos Longitudinais , Estudos Prospectivos , Índice de Massa Corporal , Obesidade/genética , Tecido Adiposo , Adiposidade/genética , Tamanho Corporal/genéticaRESUMO
BACKGROUND: Type 2 diabetes (T2D) and coronary artery disease (CAD) both have known genetic determinants, but the mechanisms through which their associated genetic variants lead to disease onset remain poorly understood. METHODS: We used large-scale metabolomics data in a two-sample reverse Mendelian randomization (MR) framework to estimate effects of genetic liability to T2D and CAD on 249 circulating metabolites in the UK Biobank (N = 118,466). We examined the potential for medication use to distort effect estimates by conducting age-stratified metabolite analyses. FINDINGS: Using inverse variance weighted (IVW) models, higher genetic liability to T2D was estimated to decrease high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) (e.g. , HDL-C: -0.05 SD; 95% CI -0.07 to -0.03, per doubling of liability), whilst increasing all triglyceride groups and branched chain amino acids (BCAAs). IVW estimates for CAD liability suggested an effect on reducing HDL-C as well as raising very-low density lipoprotein cholesterol (VLDL-C) and LDL-C. In pleiotropy-robust models, T2D liability was still estimated to increase BCAAs, but several estimates for higher CAD liability reversed and supported decreased LDL-C and apolipoprotein-B. Estimated effects of CAD liability differed substantially by age for non-HDL-C traits, with higher CAD liability lowering LDL-C only at older ages when statin use was common. INTERPRETATION: Overall, our results support largely distinct metabolic features of genetic liability to T2D and CAD, illustrating both challenges and opportunities for preventing these commonly co-occurring diseases. FUNDING: Wellcome Trust [218495/Z/19/Z], UK MRC [MC_UU_00011/1; MC_UU_00011/4], the University of Bristol, Diabetes UK [17/0005587], World Cancer Research Fund [IIG_2019_2009].
Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Fatores de Risco , LDL-Colesterol/genética , Análise da Randomização Mendeliana , HDL-Colesterol/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: The changes which typically occur in molecular causal risk factors and predictive biomarkers for cardiometabolic diseases across early life are not well characterised. METHODS: We quantified sex-specific trajectories of 148 metabolic trait concentrations including various lipoprotein subclasses from age 7 years to 25 years. Data were from 7065 to 7626 offspring (11 702 to14 797 repeated measures) of the Avon Longitudinal Study of Parents and Children birth cohort study. Outcomes were quantified using nuclear magnetic resonance spectroscopy at 7, 15, 18 and 25 years. Sex-specific trajectories of each trait were modelled using linear spline multilevel models. RESULTS: Females had higher very-low-density lipoprotein (VLDL) particle concentrations at 7 years. VLDL particle concentrations decreased from 7 years to 25 years with larger decreases in females, leading to lower VLDL particle concentrations at 25 years in females. For example, females had a 0.25 SD (95% CI 0.20 to 0.31) higher small VLDL particle concentration at 7 years; mean levels decreased by 0.06 SDs (95% CI -0.01 to 0.13) in males and 0.85 SDs (95% CI 0.79 to 0.90) in females from 7 years to 25 years, leading to 0.42 SDs (95% CI 0.35 to 0.48) lower small VLDL particle concentrations in females at 25 years. Females had lower high-density lipoprotein (HDL) particle concentrations at 7 years. HDL particle concentrations increased from 7 years to 25 years with larger increases among females leading to higher HDL particle concentrations in females at 25 years. CONCLUSION: Childhood and adolescence are important periods for the emergence of sex differences in atherogenic lipids and predictive biomarkers for cardiometabolic disease, mostly to the detriment of males.
Assuntos
Aterosclerose , Lipoproteínas , Adolescente , Humanos , Criança , Masculino , Feminino , Adulto Jovem , Adulto , Estudos de Coortes , Estudos Longitudinais , BiomarcadoresRESUMO
Genetic studies of disease progression can be used to identify factors that may influence survival or prognosis, which may differ from factors that influence on disease susceptibility. Studies of disease progression feed directly into therapeutics for disease, whereas studies of incidence inform prevention strategies. However, studies of disease progression are known to be affected by collider (also known as "index event") bias since the disease progression phenotype can only be observed for individuals who have the disease. This applies equally to observational and genetic studies, including genome-wide association studies and Mendelian randomisation (MR) analyses. In this paper, our aim is to review several statistical methods that can be used to detect and adjust for index event bias in studies of disease progression, and how they apply to genetic and MR studies using both individual- and summary-level data. Methods to detect the presence of index event bias include the use of negative controls, a comparison of associations between risk factors for incidence in individuals with and without the disease, and an inspection of Miami plots. Methods to adjust for the bias include inverse probability weighting (with individual-level data), or Slope-Hunter and Dudbridge et al.'s index event bias adjustment (when only summary-level data are available). We also outline two approaches for sensitivity analysis. We then illustrate how three methods to minimise bias can be used in practice with two applied examples. Our first example investigates the effects of blood lipid traits on mortality from coronary heart disease, while our second example investigates genetic associations with breast cancer mortality.
Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Viés , Fatores de Risco , Fenótipo , Análise da Randomização Mendeliana/métodos , Progressão da DoençaRESUMO
While archival user studies have largely focused on humanities (and adjacent) scholars, this paper focuses on anthropologists engaged in scientific research. Based on qualitative results from an open-ended survey, we investigate how science-based anthropologists perceive and use archives in their work. We ask: How are science-based anthropologists and archaeologists reusing archival data in their research? What difficulties or barriers do they encounter in reusing archival data in scientific contexts? What attitudes or understandings about archival research are held by science-based anthropologists and archaeologists? Our findings primarily add to the body of literature about user experience in archives and more broadly to the emerging literature on archival data reuse. Major findings include (1) barriers and gatekeeping legacies that impact archival research and the ability of researchers to reuse data and (2) mixed perceptions about archives among researchers. We also discuss suggestions made by these communities of practice, and the ways that barriers to archival data reuse may stem from a lack of knowledge about core archival and information infrastructures among researcher communities. Together, this research showcases possible (re)uses of important primary source data in archives among scientific communities but highlights that barriers to access and misperceptions create a gap in exploiting that potential. We argue for a "re-imagining" of anthropological archives as relevant to contemporary communities and scientific pursuits toward a richer scientific research environment.
RESUMO
BACKGROUND: Observational studies have linked childhood obesity with elevated risk of colorectal cancer; however, it is unclear if this association is causal or independent from the effects of obesity in adulthood on colorectal cancer risk. METHODS: We conducted Mendelian randomization (MR) analyses to investigate potential causal relationships between self-perceived body size (thinner, plumper, or about average) in early life (age 10) and measured body mass index in adulthood (mean age 56.5) with risk of colorectal cancer. The total and independent effects of body size exposures were estimated using univariable and multivariable MR, respectively. Summary data were obtained from a genome-wide association study of 453,169 participants in UK Biobank for body size and from a genome-wide association study meta-analysis of three colorectal cancer consortia of 125,478 participants. RESULTS: Genetically predicted early life body size was estimated to increase odds of colorectal cancer (odds ratio [OR] per category change: 1.12, 95% confidence interval [CI]: 0.98-1.27), with stronger results for colon cancer (OR: 1.16, 95% CI: 1.00-1.35), and distal colon cancer (OR: 1.25, 95% CI: 1.04-1.51). After accounting for adult body size using multivariable MR, effect estimates for early life body size were attenuated towards the null for colorectal cancer (OR: 0.97, 95% CI: 0.77-1.22) and colon cancer (OR: 0.97, 95% CI: 0.76-1.25), while the estimate for distal colon cancer was of similar magnitude but more imprecise (OR: 1.27, 95% CI: 0.90-1.77). Genetically predicted adult life body size was estimated to increase odds of colorectal (OR: 1.27, 95% CI: 1.03, 1.57), colon (OR: 1.32, 95% CI: 1.05, 1.67), and proximal colon (OR: 1.57, 95% CI: 1.21, 2.05). CONCLUSIONS: Our findings suggest that the positive association between early life body size and colorectal cancer risk is likely due to large body size retainment into adulthood.
Assuntos
Neoplasias do Colo , Obesidade Infantil , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Adiposidade/genética , Fatores de Risco , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Índice de Massa Corporal , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Total knee arthroplasty (TKA) is increasing in the elderly population; however, some patients, family members, and surgeons raise age-related concerns over expected improvement and risks. This study aimed to (1) evaluate the relationship between age and change in patient-reported outcome measures (PROMs); (2) model how many patients would be denied improvements in PROMs if hypothetical age cutoffs were implemented; and (3) assess length of stay (LOS), readmission, reoperation, and mortality per age group. A prospective cohort of 4,396 primary TKAs (August 2015-August 2018) was analyzed. One-year PROMs were evaluated via Knee injury and Osteoarthritis Outcome Score (KOOS)-pain, -physical function short form (-PS), and -quality of life (-QOL), as well as Veterans Rand-12 (VR-12) physical (-PCS) and mental component (-MCS) scores. Positive predictive values (PPVs) of the number of postoperative "failures" (i.e., unattained minimal clinically important difference in PROMs) relative to number of hypothetically denied "successes" from a theoretical age-group restriction was estimated. KOOS-PS and QOL median score improvements were equivalent among all age groups (p = 0.946 and p = 0.467, respectively). KOOS-pain improvement was equivalent for ≥80 and 60-69-year groups (44.4 [27.8-55.6]). Median VR-12 PCS improvements diminished as age increased (15.9, 14.8, and 13.4 for the 60-69, 70-79, and ≥80 groups, respectively; p = 0.002) while improvement in VR-12 MCS was similar among age groups (p = 0.440). PPV for failure was highest in the ≥80 group, yet remained <34% for all KOOS measures. Overall mortality was highest in the ≥80 group (2.14%, n = 9). LOS >2, non-home discharge, and 90-day readmission were highest in the ≥80 group (8.11% [n = 24], p < 0.001; 33.7% [n = 109], p < 0.001; and 34.4% [n = 111], p = 0.001, respectively). Elderly patients exhibited similar improvement in PROMs to younger counterparts despite higher LOS, non-home discharge, and 90-day readmission. Therefore, special care pathways should be implemented for those age groups.
Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Humanos , Idoso , Qualidade de Vida , Estudos Prospectivos , Resultado do Tratamento , Medidas de Resultados Relatados pelo Paciente , Dor , Osteoartrite do Joelho/cirurgiaRESUMO
Background: The direct effects of general adiposity (body mass index (BMI)) and central adiposity (waist-to-hip-ratio (WHR)) on circulating lipoproteins, lipids, and metabolites are unknown. Methods: We used new metabolic data from UK Biobank (N=109,532, a five-fold higher N over previous studies). EDTA-plasma was used to quantify 249 traits with nuclear-magnetic-resonance spectroscopy including subclass-specific lipoprotein concentrations and lipid content, plus pre-glycemic and inflammatory metabolites. We used univariable and multivariable two-stage least-squares regression models with genetic risk scores for BMI and WHR as instruments to estimate total (unadjusted) and direct (mutually-adjusted) effects of BMI and WHR on metabolic traits; plus effects on statin use and interaction by sex, statin use, and age (proxy for medication use). Findings: Higher BMI decreased apolipoprotein B and low-density lipoprotein cholesterol (LDL-C) before and after WHR-adjustment, whilst BMI increased triglycerides only before WHR-adjustment. These effects of WHR were larger and BMI-independent. Direct effects differed markedly by sex, e.g., triglycerides increased only with BMI among men, and only with WHR among women. Adiposity measures increased statin use and showed metabolic effects which differed by statin use and age. Among the youngest (38-53y, statins-5%), BMI and WHR (per-SD) increased LDL-C (total effects: 0.04-SD, 95%CI=-0.01,0.08 and 0.10-SD, 95%CI=0.02,0.17 respectively), but only WHR directly. Among the oldest (63-73y, statins-29%), BMI and WHR directly lowered LDL-C (-0.19-SD, 95%CI=-0.27,-0.11 and -0.05-SD, 95%CI=-0.16,0.06 respectively). Interpretation: Excess adiposity likely raises atherogenic lipid and metabolite levels exclusively via adiposity stored centrally, particularly among women. Apparent effects of adiposity on lowering LDL-C are likely explained by an effect of adiposity on statin use. Funding: UK Medical Research Council; British Heart Foundation; Novo Nordisk; National Institute for Health Research; Wellcome Trust; Cancer Research UK.
RESUMO
BACKGROUND: Sex differences in systolic blood pressure (SBP) emerge during adolescence but the role of puberty is not well understood. We examined sex-specific changes in SBP preceding and following puberty and examined the impact of puberty timing on SBP trajectories in females and males. METHODS: Trajectories of SBP before and after puberty and by timing of puberty in females and males in a contemporary birth cohort study were analyzed. Repeated measures of height from age 5 to 20 years were used to identify puberty timing (age at peak height velocity). SBP was measured on ten occasions from 3 to 24 years (N participants, 4062; repeated SBP measures, 29 172). Analyses were performed using linear spline multilevel models based on time before and after puberty and were adjusted for parental factors and early childhood factors. RESULTS: Mean age at peak height velocity was 11.7 years (SD, 0.8) for females and 13.6 years (SD, 0.9) for males. Males had faster rates of increase in SBP before puberty leading to 10.19 mm Hg (95% CI, 6.80-13.57) higher mean SBP at puberty which remained similar at 24 years (mean difference, 11.43 mm Hg [95% CI, 7.22-15.63]). Puberty timing was associated with small transient differences in SBP trajectories postpuberty in both sexes and small differences at 24 years in females only. CONCLUSIONS: A large proportion of the higher SBP observed in males compared with females in early adulthood is accrued before puberty. Interventions targeting puberty timing are unlikely to influence SBP in early adulthood.
Assuntos
Estatura , Puberdade , Adolescente , Adulto , Pressão Sanguínea/fisiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Prospectivos , Puberdade/fisiologia , Fatores de Risco , Adulto JovemRESUMO
Dietary factors are assumed to play an important role in cancer risk, apparent in consensus recommendations for cancer prevention that promote nutritional changes. However, the evidence in this field has been generated predominantly through observational studies, which may result in biased effect estimates because of confounding, exposure misclassification, and reverse causality. With major geographical differences and rapid changes in cancer incidence over time, it is crucial to establish which of the observational associations reflect causality and to identify novel risk factors as these may be modified to prevent the onset of cancer and reduce its progression. Mendelian randomization (MR) uses the special properties of germline genetic variation to strengthen causal inference regarding potentially modifiable exposures and disease risk. MR can be implemented through instrumental variable (IV) analysis and, when robustly performed, is generally less prone to confounding, reverse causation and measurement error than conventional observational methods and has different sources of bias (discussed in detail below). It is increasingly used to facilitate causal inference in epidemiology and provides an opportunity to explore the effects of nutritional exposures on cancer incidence and progression in a cost-effective and timely manner. Here, we introduce the concept of MR and discuss its current application in understanding the impact of nutritional factors (e.g., any measure of diet and nutritional intake, circulating biomarkers, patterns, preference or behaviour) on cancer aetiology and, thus, opportunities for MR to contribute to the development of nutritional recommendations and policies for cancer prevention. We provide applied examples of MR studies examining the role of nutritional factors in cancer to illustrate how this method can be used to help prioritise or deprioritise the evaluation of specific nutritional factors as intervention targets in randomised controlled trials. We describe possible biases when using MR, and methodological developments aimed at investigating and potentially overcoming these biases when present. Lastly, we consider the use of MR in identifying causally relevant nutritional risk factors for various cancers in different regions across the world, given notable geographical differences in some cancers. We also discuss how MR results could be translated into further research and policy. We conclude that findings from MR studies, which corroborate those from other well-conducted studies with different and orthogonal biases, are poised to substantially improve our understanding of nutritional influences on cancer. For such corroboration, there is a requirement for an interdisciplinary and collaborative approach to investigate risk factors for cancer incidence and progression.
Assuntos
Análise da Randomização Mendeliana , Neoplasias , Causalidade , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias/etiologia , Neoplasias/genética , Estado Nutricional , Fatores de RiscoRESUMO
Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1), high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r2 = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r2 < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.