Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Rep ; 12(1): 8464, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589763

RESUMO

In the past decades, absorption modalities have emerged as powerful tools for label-free functional and structural imaging of cells and tissues. Many biomolecules present unique absorption spectra providing chromophore-specific information on properties such as chemical bonding, and sample composition. As chromophores absorb photons the absorbed energy is emitted as photons (radiative relaxation) or converted to heat and under specific conditions pressure (non-radiative relaxation). Modalities like fluorescence microscopy may capture radiative relaxation to provide contrast, while modalities like photoacoustic microscopy may leverage non-radiative heat and pressures. Here we show an all-optical non-contact total-absorption photoacoustic remote sensing (TA-PARS) microscope, which can capture both radiative and non-radiative absorption effects in a single acquisition. The TA-PARS yields an absorption metric proposed as the quantum efficiency ratio (QER), which visualizes a biomolecule's proportional radiative and non-radiative absorption response. The TA-PARS provides label-free visualization of a range of biomolecules enabling convincing analogues to traditional histochemical staining of tissues, effectively providing label-free Hematoxylin and Eosin (H&E)-like visualizations. These findings establish an effective all-optical non-contact total-absorption microscope for label-free inspection of biological materials.


Assuntos
Técnicas Fotoacústicas , Amarelo de Eosina-(YS) , Hematoxilina , Microscopia de Fluorescência , Técnicas Fotoacústicas/métodos , Tecnologia de Sensoriamento Remoto/métodos
2.
Biomed Opt Express ; 13(11): 5643-5653, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36733742

RESUMO

Optically shifting the focal plane to allow depth scanning of delicate biological structures and processes in their natural environment offers an appealing alternative to conventional mechanical scanning. Our technique uses a deformable mirror-based photoacoustic remote sensing microscopy (PARS) with a focus shifting of Δz ∼ 240 µm. We achieve this by integrating a deformable mirror that functions as a varifocal mirror for axial scanning. First, the system's focal shift capability was demonstrated with USAF resolution targets and carbon fiber phantoms, followed by in-vivo visualizations of blood vessels in chicken embryo chorioallantoic membrane (CAM). This work represents an initial step toward developing a non-contact, label-free, and aberration-free PARS imaging system with axial scanning capability.

3.
Opt Express ; 29(15): 24338-24348, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614681

RESUMO

An improved method of remote optical absorption spectroscopy and hyperspectral optical absorption imaging is described which takes advantage of the photoacoustic remote sensing detection architecture. A wide collection of photoacoustic excitation wavelengths ranging from 210 nm to 1550 nm was provided by a nanosecond tunable source allowing access to various salient endogenous chromophores such as DNA, hemeproteins, and lipids. Sensitivity of the device was demonstrated by characterizing the infrared absorption spectrum of water. Meanwhile, the efficacy of the technique was explored by recovering cell nuclei and oxygen saturation from a live chicken embryo model and by recovering adipocytes from freshly resected murine adipose tissue. This represents a continued investigation into the characteristics of the hyperspectral photoacoustic remote sensing technique which may represent an effective means of non-destructive endogenous contrast characterization and visualization.


Assuntos
Membrana Corioalantoide/química , DNA/análise , Hemoglobinas/análise , Lipídeos/análise , Microscopia/métodos , Técnicas Fotoacústicas/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Animais , Embrião de Galinha , Luz , Saturação de Oxigênio , Análise Espectral
4.
Sci Rep ; 11(1): 13723, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215785

RESUMO

Histological images are critical in the diagnosis and treatment of cancers. Unfortunately, current methods for capturing these microscopy images require resource intensive tissue preparation that may delay diagnosis for days or weeks. To streamline this process, clinicians are limited to assessing small macroscopically representative subsets of tissues. Here, a combined photoacoustic remote sensing (PARS) microscope and swept source optical coherence tomography system designed to circumvent these diagnostic limitations is presented. The proposed multimodal microscope provides label-free three-dimensional depth resolved virtual histology visualizations, capturing nuclear and extranuclear tissue morphology directly on thick unprocessed specimens. The capabilities of the proposed method are demonstrated directly in unprocessed formalin fixed resected tissues. The first images of nuclear contrast in resected human tissues, and the first three-dimensional visualization of subsurface nuclear morphology in resected Rattus tissues, captured with a non-contact photoacoustic system are presented here. Moreover, the proposed system captures the first co-registered OCT and PARS images enabling direct histological assessment of unprocessed tissues. This work represents a vital step towards the development of a rapid histological imaging modality to circumvent the limitations of current histopathology techniques.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias/patologia , Tecnologia de Sensoriamento Remoto/métodos , Tomografia de Coerência Óptica , Animais , Técnicas Histológicas/tendências , Humanos , Microscopia , Neoplasias/diagnóstico , Técnicas Fotoacústicas/métodos , Ratos , Realidade Virtual
5.
Quant Imaging Med Surg ; 11(3): 1033-1045, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654675

RESUMO

BACKGROUND: As photoacoustic (PA) techniques progress towards clinical adoption, providing a high-speed live feedback becomes a high priority. To keep up with the instantaneous optical feedback of conventional light microscopes, PA imaging would need to provide a high-resolution video-rate live feed to the user. However, conventional PA microscopy typically trades resolution, sensitivity and imaging speed when optically scanning due to the difficult opto-acoustic confocal geometry. Here, we employ photoacoustic remote sensing (PARS), an all-optical technique that relies on optical confocal geometry, to provide a high-resolution live display in a reflection-mode PA architecture. METHODS: Employing a conventional x-y galvanometer scanner and a 600 KHz pulse repetition rate laser we implement a system capable of acquiring 2.5 frames per second in 2D. To complement this fast scanning optical system, we implement a computationally inexpensive image reconstruction method that is able to render the frames with minimal overhead, providing a live display. RESULTS: Employing the proposed method, we demonstrate a live feedback with frame rates as high as 2.5 Hz in 2D and also report the first results of 3D imaging with a non-contact label-free reflection-mode technique. The method is validated with phantom studies and in-vivo imaging. Employing a repetition rate of 600 KHz, a live feed of carbon fibers is realized with a C-scan rate of 2.5 Hz. The imaging resolution was measured to be 1.2 µm, the highest reported for a real-time reflection-mode architecture. The mean and peak SNR were measured to be 44 and 62 dB respectively in-vivo. 3D visualizations of carbon fiber phantoms and mouse ear microvasculature structure are also demonstrated. CONCLUSIONS: In summary, we present a method that has a small computational overhead for image rendering, resulting in a live display capable of real-time frame rates. We also report the first 3D imaging with a non-contact label-free reflection-mode PA technique. The all-optical confocal geometry required by PARS is significantly easier to implement and maintain than the opto-acoustic geometry of conventional PA microscopy techniques. This results in a system capable of high resolution and sensitivity, imaging at real-time rates. The authors believe this work represents a vital step towards a clinical high-resolution reflection-mode video-rate PA imaging system.

6.
Quant Imaging Med Surg ; 11(3): 1070-1077, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654678

RESUMO

Gastrointestinal (GI) tissue biopsies provide critical diagnostic information for a wide variety of conditions such as neoplastic diseases (colorectal, small bowel and stomach cancers) and non-neoplastic diseases (inflammatory disorders, infection, celiac disease). Endoscopic biopsies collect small tissue samples that require resource intensive processing to permit histopathological analysis. Unfortunately, the sparsely collected biopsy samples may fail to capture the pathologic condition because selection of biopsy sites relies on macroscopic superficial tissue features and clinician judgement. Here, we present the first all-optical non-contact label-free non-interferometric photoacoustic microscopy system capable of performing "virtual biopsies". A modular photoacoustic remote sensing (PARS™) architecture is used facilitating imaging of unprocessed tissues providing information similar to conventional histopathological staining techniques. Prospectively this would allow gastroenterologists to assess subcellular tissue morphology in situ when selecting biopsy location. Tested on preserved unstained human and freshly resected murine tissues, the presented PARS microscope rapidly retrieves images of similar area to current biopsies, while maintaining comparable quality to the current standard for histopathological analysis. Additionally, results show the first label free assessment of subsurface cellular morphology in FFPE GI tissue blocks. Clinically relevant features are recovered including cellular details such as lamina propria within colon tissue and cell nuclear structure in resected smooth muscle. Constructed with a modular architecture, this system facilitates the future development of compact imaging heads. The modular PARS system overcomes many of the challenges with imaging unstained thick tissue in situ, representing a significant milestone in the development of a clinical microscope providing virtual biopsy capabilities.

7.
Biomed Opt Express ; 12(1): 654-665, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659093

RESUMO

Mohs micrographic surgery (MMS) is a precise oncological technique where layers of tissue are resected and examined with intraoperative histopathology to minimize the removal of normal tissue while completely excising the cancer. To achieve intraoperative pathology, the tissue is frozen, sectioned and stained over a 20- to 60-minute period, then analyzed by the MMS surgeon. Surgery is continued one layer at a time until no cancerous cells remain, meaning MMS can take several hours to complete. Ideally, it would be desirable to circumvent or augment frozen sectioning methods and directly visualize subcellular morphology on the unprocessed excised tissues. Employing photoacoustic remote sensing (PARS) microscopy, we present a non-contact label-free reflection-mode method of performing such visualizations in frozen sections of human skin. PARS leverages endogenous optical absorption contrast within cell nuclei to provide visualizations reminiscent of histochemical staining techniques. Presented here, is the first true one to one comparison between PARS microscopy and standard histopathological imaging in human tissues. We demonstrate the ability of PARS microscopy to provide large grossing scans (>1 cm2, sufficient to visualize entire MMS sections) and regional scans with subcellular lateral resolution (300 nm).

8.
Biomed Opt Express ; 11(11): 6211-6230, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282485

RESUMO

The presence of circulating tumor cells (CTCs) in a patient's bloodstream is a hallmark of metastatic cancer. The detection and analysis of CTCs is a promising diagnostic and prognostic strategy as they may carry useful genetic information from their derived primary tumor, and the enumeration of CTCs in the bloodstream has been known to scale with disease progression. However, the detection of CTCs is a highly challenging task owing to their sparse numbers in a background of billions of background blood cells. To effectively utilize CTCs, there is a need for an assay that can detect CTCs with high specificity and can locally enrich CTCs from a liquid biopsy. We demonstrate a versatile methodology that addresses these needs by utilizing a combination of nanoparticles. Enrichment is achieved using targeted magnetic nanoparticles and high specificity detection is achieved using a ratiometric detection approach utilizing multiplexed targeted and non-targeted surface-enhanced Raman Scattering Nanoparticles (SERS-NPs). We demonstrate this approach with model prostate and cervical circulating tumor cells and show the ex vivo utility of our methodology for the detection of PSMA or folate receptor over-expressing CTCs. Our approach allows for the mitigation of interference caused by the non-specific uptake of nanoparticles by other cells present in the bloodstream and our results from magnetically trapped CTCs reveal over a 2000% increase in targeted SERS-NP signal over non-specifically bound SERS-NPs.

9.
Opt Lett ; 45(22): 6254-6257, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186963

RESUMO

We present, to the best of our knowledge, the first label-free, non-contact, in vivo imaging of the ocular vasculature using photoacoustic remote sensing (PARS) microscopy. Both anterior and posterior segments of a mouse eye were imaged. Vasculature of the iris, sclera, and retina tissues were clearly resolved. To the best of our knowledge, this is the first study showing non-contact photoacoustic imaging conducted on in vivo ocular tissue. We believe that PARS microscopy has the potential to advance the diagnosis and treatment of ocular diseases.


Assuntos
Olho/diagnóstico por imagem , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Tecnologia de Sensoriamento Remoto/métodos , Animais , Camundongos
10.
Sci Rep ; 10(1): 19121, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154496

RESUMO

Histological visualizations are critical to clinical disease management and are fundamental to biological understanding. However, current approaches that rely on bright-field microscopy require extensive tissue preparation prior to imaging. These processes are both labor intensive and contribute to creating significant delays in clinical feedback for treatment decisions that can extend to 2-3 weeks for standard paraffin-embedded tissue preparation and interpretation, especially if ancillary testing is needed. Here, we present the first comprehensive study on the broad application of a novel label-free reflection-mode imaging modality known as photoacoustic remote sensing (PARS) for visualizing salient subcellular structures from various common histopathological tissue preparations and for use in unprocessed freshly resected tissues. The PARS modality permits non-contact visualizations of intrinsic endogenous optical absorption contrast to be extracted from thick and opaque biological targets with optical resolution. The technique was examined both as a rapid assessment tool that is capable of managing large samples (> 1 cm2) in under 10 min, and as a high contrast imaging modality capable of extracting specific biological contrast to simulate conventional histological stains such as hematoxylin and eosin (H&E). The capabilities of the proposed method are demonstrated in a variety of human tissue preparations including formalin-fixed paraffin-embedded tissue blocks and unstained slides sectioned from these blocks, including normal and neoplastic human brain, and breast epithelium involved with breast cancer. Similarly, PARS images of human skin prepared by frozen section clearly demonstrated basal cell carcinoma and normal human skin tissue. Finally, we imaged unprocessed murine kidney and achieved histologically relevant subcellular morphology in fresh tissue. This represents a vital step towards an effective real-time clinical microscope that overcomes the limitations of standard histopathologic tissue preparations and enables real-time pathology assessment.


Assuntos
Microscopia/métodos , Técnicas Fotoacústicas , Tecnologia de Sensoriamento Remoto , Animais , Humanos , Rim/patologia , Camundongos , Pele/patologia , Coloração e Rotulagem
11.
Photoacoustics ; 20: 100207, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33024694

RESUMO

Photoacoustic imaging (PAI) takes advantage of both optical and ultrasound imaging properties to visualize optical absorption with high resolution and contrast. Photoacoustic microscopy (PAM) is usually categorized with all-optical microscopy techniques such as optical coherence tomography or confocal microscopes. Despite offering high sensitivity, novel imaging contrast, and high resolution, PAM is not generally an all-optical imaging method unlike the other microscopy techniques. One of the significant limitations of photoacoustic microscopes arises from their need to be in physical contact with the sample through a coupling media. This physical contact, coupling, or immersion of the sample is undesirable or impractical for many clinical and pre-clinical applications. This also limits the flexibility of photoacoustic techniques to be integrated with other all-optical imaging microscopes for providing complementary imaging contrast. To overcome these limitations, several non-contact photoacoustic signal detection approaches have been proposed. This paper presents a brief overview of current non-contact photoacoustic detection techniques with an emphasis on all-optical detection methods and their associated physical mechanisms.

12.
Sci Rep ; 10(1): 17211, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057037

RESUMO

Malignant brain tumors are among the deadliest neoplasms with the lowest survival rates of any cancer type. In considering surgical tumor resection, suboptimal extent of resection is linked to poor clinical outcomes and lower overall survival rates. Currently available tools for intraoperative histopathological assessment require an average of 20 min processing and are of limited diagnostic quality for guiding surgeries. Consequently, there is an unaddressed need for a rapid imaging technique to guide maximal resection of brain tumors. Working towards this goal, presented here is an all optical non-contact label-free reflection mode photoacoustic remote sensing (PARS) microscope. By using a tunable excitation laser, PARS takes advantage of the endogenous optical absorption peaks of DNA and cytoplasm to achieve virtual contrast analogous to standard hematoxylin and eosin (H&E) staining. In conjunction, a fast 266 nm excitation is used to generate large grossing scans and rapidly assess small fields in real-time with hematoxylin-like contrast. Images obtained using this technique show comparable quality and contrast to the current standard for histopathological assessment of brain tissues. Using the proposed method, rapid, high-throughput, histological-like imaging was achieved in unstained brain tissues, indicating PARS' utility for intraoperative guidance to improve extent of surgical resection.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Microscopia/instrumentação , Procedimentos Neurocirúrgicos/instrumentação , Técnicas Fotoacústicas/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Técnicas Estereotáxicas/instrumentação , Cirurgia Assistida por Computador/instrumentação , Neoplasias Encefálicas/patologia , Amarelo de Eosina-(YS) , Glioma/patologia , Hematoxilina , Humanos , Processamento de Imagem Assistida por Computador/métodos , Margens de Excisão , Microscopia/métodos , Procedimentos Neurocirúrgicos/métodos , Técnicas Fotoacústicas/métodos , Tecnologia de Sensoriamento Remoto/métodos , Cirurgia Assistida por Computador/métodos
13.
Opt Lett ; 45(13): 3427-3430, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630862

RESUMO

A method of remote optical absorption spectroscopy is described that utilizes the photoacoustic remote sensing detection technique. A nanosecond tunable excitation source is used to excite thermo-elastic pressure-induced elasto-optic modulations within targets across a wide wavelength range from 210 to 680 nm, providing optical absorption contrast. These modulations are read remotely as back-reflected intensity variations within a continuous-wave 1310 nm detection beam. The absorption spectra of several samples including dyes and biological macromolecules are captured with an 8 mm working distance in reflection-mode without the use of containment chambers or acoustic detection. This represents an initial investigation into the characteristics of this technique, which may facilitate optical absorption measurement within previously inaccessible sample types due to their size or opacity.

14.
Sensors (Basel) ; 20(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075006

RESUMO

Mechanical stages are routinely used to scan large expanses of biological specimens in photoacoustic imaging. This is primarily due to the limited field of view (FOV) provided by optical scanning. However, stage scanning becomes impractical at higher scanning speeds, or potentially unfeasible with heavier samples. Also, the slow scan-rate of the stages makes high resolution scanning a time-consuming process. Some clinical applications such as microsurgery require submicron resolution in a reflection-mode configuration necessitating a method that can acquire large field of views with a small raster scanning step size. In this study, we describe a method that combines mechanical stages with optical scanning for the rapid acquisition of high-resolution large FOVs. Optical scanning is used to acquire small frames in a two-dimensional grid formed by the mechanical stages. These frames are captured with specific overlap for effective image registration. Using a step size of 200 nm, we demonstrate mosaics of carbon fiber networks with FOVs of 0.8 × 0.8 mm2 captured in under 70 s with 1.2 µm image resolution. Larger mosaics yielding an imaging area of 3 × 3 mm2 are also shown. The method is validated by imaging a 1 × 1 mm2 section of unstained histopathological human tissue.


Assuntos
Técnicas Fotoacústicas , Tecnologia de Sensoriamento Remoto , Mama/diagnóstico por imagem , Fibra de Carbono/química , Feminino , Humanos , Imageamento Tridimensional , Processamento de Sinais Assistido por Computador , Fatores de Tempo
15.
Biomed Opt Express ; 10(11): 5461-5469, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31799024

RESUMO

Identifying positive surgical margins after resection of cancer often triggers re-excision and adjuvant treatments. Incomplete initial resections result in poorer patient outcomes, psychological and financial stress to the patient and increased healthcare costs. Surgical margins are typically assessed post-operatively using time consuming and expensive slide-based histopathology tissue analysis. Currently, a real-time non-contact virtual histology-like intraoperative margin assessment tool is not available. To address this need, we have developed a non-contact multi-wavelength reflection-mode, photoacoustic remote sensing (PARS) microscope demonstrating chromophore selective contrast in human tissues. We show the capabilities of multi-wavelength PARS microscopy utilizing both 266 nm and 532 nm excitation wavelengths and a 1310 nm detection wavelength. Cell nuclei and hemoglobin were visualized at the cellular scale without the addition of exogenous contrast agents. These works provide a critical step towards a virtual histology tool to provide intraoperative histology-like information in living tissue.

16.
Sci Rep ; 9(1): 13392, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527734

RESUMO

Surgical oncologists depend heavily on visual field acuity during cancer resection surgeries for in-situ margin assessment. Clinicians must wait up to two weeks for results from a pathology lab to confirm a post-operative diagnosis, potentially resulting in subsequent treatments. Currently, there are no clinical tools that can visualize diagnostically pertinent tissue information in-situ. Here, we present the first microscopy capable of non-contact label-free visualization of human cellular morphology in a reflection-mode apparatus. This is possible with the recently reported imaging modality called photoacoustic remote sensing microscopy which enables non-contact detection of optical absorption contrast. By taking advantage of the 266-nanometer optical absorption peak of DNA, photoacoustic remote sensing is efficacious in recovering qualitatively similar nuclear information in comparison to that provided by the hematoxylin stain in the gold-standard hematoxylin and eosin (H&E) prepared samples. A photoacoustic remote sensing system was employed utilizing a 266-nanometer pulsed excitation beam to induce photoacoustic pressures within the sample resulting in refractive index modulation of the optical absorber. A 1310-nanometer continuous-wave interrogation beam detects these perturbed regions as back reflected intensity variations due to the changes in the local optical properties. Using this technique, clinically useful histologic images of human tissue samples including breast cancer (invasive ductal carcinoma), tonsil, gastrointestinal, and pancreatic tissue images were formed. These were qualitatively comparable to standard H&E prepared samples.


Assuntos
Neoplasias da Mama/patologia , Amarelo de Eosina-(YS)/química , Neoplasias Gastrointestinais/patologia , Hematoxilina/química , Microscopia/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Tonsilares/patologia , Neoplasias da Mama/diagnóstico por imagem , Feminino , Neoplasias Gastrointestinais/diagnóstico por imagem , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Tonsilares/diagnóstico por imagem
17.
Sensors (Basel) ; 19(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434241

RESUMO

Photoacoustic imaging (PAI) is an emerging imaging technique that bridges the gap between pure optical and acoustic techniques to provide images with optical contrast at the acoustic penetration depth. The two key components that have allowed PAI to attain high-resolution images at deeper penetration depths are the photoacoustic signal generator, which is typically implemented as a pulsed laser and the detector to receive the generated acoustic signals. Many types of acoustic sensors have been explored as a detector for the PAI including Fabry-Perot interferometers (FPIs), micro ring resonators (MRRs), piezoelectric transducers, and capacitive micromachined ultrasound transducers (CMUTs). The fabrication technique of CMUTs has given it an edge over the other detectors. First, CMUTs can be easily fabricated into given shapes and sizes to fit the design specifications. Moreover, they can be made into an array to increase the imaging speed and reduce motion artifacts. With a fabrication technique that is similar to complementary metal-oxide-semiconductor (CMOS), CMUTs can be integrated with electronics to reduce the parasitic capacitance and improve the signal to noise ratio. The numerous benefits of CMUTs have enticed researchers to develop it for various PAI purposes such as photoacoustic computed tomography (PACT) and photoacoustic endoscopy applications. For PACT applications, the main areas of research are in designing two-dimensional array, transparent, and multi-frequency CMUTs. Moving from the table top approach to endoscopes, some of the different configurations that are being investigated are phased and ring arrays. In this paper, an overview of the development of CMUTs for PAI is presented.

18.
Opt Lett ; 44(14): 3466-3469, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305549

RESUMO

A fiber-tetherable non-contact photoacoustic remote sensing microscopy system capable of multiplex functional imaging is reported. By utilizing stimulated Raman scattering within an over-pumped polarization-maintaining single-mode optical fiber, rapid pulse-to-pulse switching (500 kHz) of excitation spectral content is demonstrated and utilized as a photoacoustic excitation source. These rapid acquisitions aim to reduce motion artifacts and facilitate high frame rates appropriate for real-time feedback to users. The system is characterized by estimating blood oxygen saturation in blood-flow phantoms and within a mouse ear in vivo.

19.
Opt Lett ; 44(14): 3586-3589, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305578

RESUMO

Traditional histopathology involves fixing, sectioning, and staining protocols that are time consuming and subject to staining variability. In this Letter, we present ultraviolet photoacoustic remote sensing microscopy, capable of imaging cell nuclei without the need for exogenous stains or labelling. Our reflection mode approach is non-contact and has the potential to provide useful histological information without laborious sample preparation steps. Tumor cell cultures and excised tissue samples were imaged with the 0.7 µm resolution and signal-to-noise ratios as high as 53 dB, with close agreement to traditional hematoxylin and eosin staining.

20.
Opt Express ; 26(18): 23689-23704, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184866

RESUMO

Photoacoustic remote sensing microscopy (PARS) represents a new paradigm within the optical imaging community by providing high sensitivity (>50 dB in vivo) non-contact optical absorption contrast in scattering media with a reflection-mode configuration. Unlike contact-based photoacoustic modalities which can acquire complete A-scans with a single excitation pulse due to slow acoustic propagation facilitating the use of time-gated collection of returning acoustic signals, PARS provides depth resolution only through optical sectioning. Here we introduce a new approach for providing coherence-gated depth-resolved PARS imaging using a difference between pulsed-interrogation optical coherence tomography scan-lines with and without excitation pulses. Proposed methods are validated using simulations which account for pulsed-laser induced initial-pressures and accompanying refractive index changes. The changes in refractive index are shown to be proportional to optical absorption. It is demonstrated that to achieve optimal image quality, several key parameters must be selected including interrogation pulse duration and delay. The proposed approach offers the promise of non-contact depth-resolved optical absorption contrast at optical-resolution scales and may complement the scattering contrast offered by optical coherence tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA