Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26737975

RESUMO

In this paper, we propose a parametric approach for the assessment of wall motion in Left Ventricle (LV) function in cardiac cine-Magnetic Resonance Imaging (MRI). Time-signal intensity curves (TSICs) are identified in Spatio-temporal image profiles extracted from different anatomical segments in a cardiac MRI sequence. Different parameters are constructed from specific TSICs that present a decreasing then increasing shape reflecting dynamic information of the LV contraction. The parameters extracted from these curves are related to: 1) an average curve based on a clustering process, 2) curve skewness and 3) cross correlation values between each average clustered curve and a patient-specific reference. Several tests are performed in order to construct different vectors to train a sparse classifier based on kernel Dictionary Learning (DL). Results are compared with other classifiers like Support Vector Machine (SVM) and Discriminative Dictionary Learning. The best classification performance is obtained with information of skewness and the average curve with an accuracy about 94% using the mentioned sparse based kernel DL with a radial basis function kernel.


Assuntos
Algoritmos , Ventrículos do Coração/fisiopatologia , Coração/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Estudos de Casos e Controles , Análise por Conglomerados , Humanos , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA