Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biomed Eng ; 3(1): 10, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099062

RESUMO

BACKGROUND: In response to supply shortages caused by the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs or "masks"), which are typically single-use devices in healthcare settings, are routinely being used for prolonged periods and in some cases decontaminated under "reuse" and "extended use" policies. However, the reusability of N95 masks is limited by degradation of fit. Possible substitutes, such as KN95 masks meeting Chinese standards, frequently fail fit testing even when new. The purpose of this study was to develop an inexpensive frame for damaged and poorly fitting masks using readily available materials and 3D printing. RESULTS: An iterative design process yielded a mask frame consisting of two 3D printed side pieces, malleable wire links that users press against their face, and cut lengths of elastic material that go around the head to hold the frame and mask in place. Volunteers (n = 45; average BMI = 25.4), underwent qualitative fit testing with and without mask frames wearing one or more of four different brands of FFRs conforming to US N95 or Chinese KN95 standards. Masks passed qualitative fit testing in the absence of a frame at rates varying from 48 to 94 % (depending on mask model). For individuals who underwent testing using respirators with broken or defective straps, 80-100 % (average 85 %) passed fit testing with mask frames. Among individuals who failed fit testing with a KN95, ~ 50 % passed testing by using a frame. CONCLUSIONS: Our study suggests that mask frames can prolong the lifespan of N95 and KN95 masks by serving as a substitute for broken or defective bands without adversely affecting fit. Use of frames made it possible for ~ 73 % of the test population to achieve a good fit based on qualitative and quantitative testing criteria, approaching the 85-90 % success rate observed for intact N95 masks. Frames therefore represent a simple and inexpensive way of expanding access to PPE and extending their useful life. For clinicians and institutions interested in mask frames, designs and specifications are provided without restriction for use or modification. To ensure adequate performance in clinical settings, fit testing with user-specific masks and PanFab frames is required.

2.
medRxiv ; 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32743606

RESUMO

BACKGROUND: In response to supply shortages during the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs or "masks"), which are typically single-use devices in healthcare settings, are routinely being used for prolonged periods and in some cases decontaminated under "reuse" and "extended use" policies. However, the reusability of N95 masks is often limited by degradation or breakage of elastic head bands and issues with mask fit after repeated use. The purpose of this study was to develop a frame for N95 masks, using readily available materials and 3D printing, which could replace defective or broken bands and improve fit. RESULTS: An iterative design process yielded a mask frame consisting of two 3D-printed side pieces, malleable wire links that users press against their face, and cut lengths of elastic material that go around the head to hold the frame and mask in place. Volunteers (n= 41; average BMI= 25.5), of whom 31 were women, underwent qualitative fit with and without mask frames and one or more of four different brands of FFRs conforming to US N95 or Chinese KN95 standards. Masks passed qualitative fit testing in the absence of a frame at rates varying from 48 - 92% (depending on mask model and tester). For individuals for whom a mask passed testing, 75-100% (average = 86%) also passed testing with a frame holding the mask in place. Among users for whom a mask failed in initial fit testing, 41% passed using a frame. Success varied with mask model and across individuals. CONCLUSIONS: The use of mask frames can prolong the lifespan of N95 and KN95 masks by serving as a substitute for broken or defective bands without adversely affecting fit. Frames also have the potential to improve fit for some individuals who cannot fit existing masks. Frames therefore represent a simple and inexpensive way of extending the life and utility of PPE in short supply. For clinicians and institutions interested in mask frames, designs and specifications are provided without restriction for use or modification. To ensure adequate performance in clinical settings, qualitative fit testing with user-specific masks and frames is required.

3.
Med ; 1(1): 139-151.e4, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32838357

RESUMO

BACKGROUND: Due to supply chain disruption, the COVID-19 pandemic has caused severe shortages in personal protective equipment for health care professionals. Local fabrication based on 3D printing is one way to address this challenge, particularly in the case of products such as protective face shields. No clear path exists, however, for introducing a locally fabricated product into a clinical setting. METHODS: We describe a research protocol under Institutional Review Board supervision that allowed clinicians to participate in an iterative design process followed by real-world testing in an emergency department. All designs, materials used, testing protocols, and survey results are reported in full to facilitate similar efforts in other clinical settings. FINDINGS: Clinical testing allowed the incident command team at a major academic medical center to introduce the locally fabricated face shield into general use in a rapid but well-controlled manner. Unlike standard hospital face shields, the locally fabricated design was intended to be reusable. We discuss the design and testing process and provide an overview of regulatory considerations associated with fabrication and testing of personal protective equipment, such as face shields. CONCLUSIONS: Our work serves as a case study for robust, local responses to pandemic-related disruption of medical supply chains with implications for health care professionals, hospital administrators, regulatory agencies, and concerned citizens in the COVID-19 and future health care emergencies. FUNDING: : This work was supported by the Harvard MIT Center for Regulatory Sciences, NIH/NCI grants U54-CA225088 and T32-GM007753, and the Harvard Ludwig Center. M.-J.A. is a Friends of McGovern Graduate Fellow.


Assuntos
COVID-19 , Equipamentos e Provisões Hospitalares/normas , Equipamento de Proteção Individual/normas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitais , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
4.
medRxiv ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32511612

RESUMO

Due to supply chain disruption, the COVID-19 pandemic has caused severe shortages in personal protective equipment (PPE) for health care professionals. Local fabrication based on 3D printing is one way to address this challenge, particularly in the case of simple products such as protective face shields. As a consequence, many public domain designs for face shields have become available. No clear path exists, however, for introducing a locally fabricated and unapproved product into a clinical setting. In a US health care setting, face shields are regulated by the Food and Drug Administration (FDA); similar policies exist in other countries. We describe a research protocol under which rapid iteration on an existing design, coupled with clinical feedback and real-world testing in an emergency department, allowed a face shield to be adopted by the incident command team at a major academic medical center. We describe our design and testing process and provide an overview of regulatory considerations associated with fabrication and testing of face shields and related products. All designs, materials used, testing protocols, and survey results are reported in full to facilitate the execution of similar face shield efforts in other clinical settings. Our work serves as a case study for development of a robust local response to pandemics and other health care emergencies, with implications for healthcare professionals, hospital administrators, regulatory agencies and concerned citizens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA