Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Dent Mater ; 40(5): 842-857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580561

RESUMO

OBJECTIVES: Lithium silicate-based glass ceramics have evolved as a paramount restorative material in restorative and prosthetic dentistry, exhibiting outstanding esthetic and mechanical performance. Along with subtractive machining techniques, this material class has conquered the market and satisfied the patients' needs for a long-lasting, excellent, and metal-free alternative for single tooth replacements and even smaller bridgework. Despite the popularity, not much is known about the material chemistry, microstructure and terminal behaviour. METHODS: This article combines a set of own experimental data with extensive review of data from literature and other resources. Starting at manufacturer claims on unique selling propositions, properties, and microstructural features, the aim is to validate those claims, based on glass science. Deep knowledge is mandatory for understanding the microstructure evolution during the glass ceramic process. RESULTS: Fundamental glass characteristics have been addressed, leading to formation of time-temperature-transformation (TTT) diagrams, which are the basis for kinetic description of the glass ceramic process. Nucleation and crystallization kinetics are outlined in this contribution as well as analytical methods to describe the crystalline fraction and composition qualitatively and quantitatively. In relation to microstructure, the mechanical performance of lithium silicate-based glass ceramics has been investigated with focus on fracture strength versus fracture toughness as relevant clinical predictors. CONCLUSION: Fracture toughness has been found to be a stronger link to initially outlined manufacturer claims, and to more precisely match ISO recommendations for clinical indications.


Assuntos
Cerâmica , Teste de Materiais , Silicatos , Cerâmica/química , Silicatos/química , Vidro/química , Propriedades de Superfície , Materiais Dentários/química , Cristalização , Compostos de Lítio/química , Porcelana Dentária/química
2.
J Mech Behav Biomed Mater ; 143: 105888, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178636

RESUMO

Y-TZP/MWCNT-SiO2 nanocomposite was synthesized by co-precipitation and hydrothermal treatment methods. After the characterization of the MWCNT-SiO2 powder, specimens were obtained from the synthesized material Y-TZP/MWCNT-SiO2 by uniaxial pressing for a second characterization and later comparison of its optical and mechanical properties with the conventional Y-TZP. The MWCNT-SiO2 was presented in bundles of carbon nanotubes coated by silica (mean length: 5.10 ± 1.34 µm /D90: 6.9 µm). The composite manufactured was opaque (contrast ratio: 0.9929 ± 0.0012) and had a white color with a slightly difference from the conventional Y-TZP (ΔE00: 4.4 ± 2.2) color. The mechanical properties of Y-TZP/MWCNT-SiO2: vickers hardness (10.14 ± 1.27 GPa; p = 0.25) and fracture toughness (4.98 ± 0.30 MPa m1/2; p = 0.39), showed no significant difference from the conventional Y-TZP (hardness: 8.87 ± 0.89; fracture toughness: 4.98 ± 0.30 MPa m1/2). However, for flexural strength (p = 0.003), a lower value was obtained for Y-TZP/MWCNT-SiO2 (299.4 ± 30.5 MPa) when compared to the control Y-TZP (623.7 ± 108.8 MPa). The manufactured Y-TZP/MWCNT-SiO2 composite presented satisfactory optical properties, however the co-precipitation and hydrothermal treatment methods need to be optimized to avoid the formation of porosities and strong agglomerates, both from Y-TZP particles and MWCNT-SiO2 bundles, which lead to a significant decrease in the material flexural strength.


Assuntos
Nanocompostos , Nanotubos de Carbono , Dióxido de Silício , Teste de Materiais , Zircônio , Ítrio , Propriedades de Superfície , Materiais Dentários
3.
Dent Mater ; 39(6): 557-567, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076403

RESUMO

OBJECTIVES: Diamond machining of lithium silicate glass-ceramics (LS) induces extensive edge chipping damage, detrimentally affecting LS restoration functionality and long-term performance. This study approached novel ultrasonic vibration-assisted machining of pre-crystallized and crystallized LS materials to investigate induced edge chipping damage in comparison with conventional machining. METHODS: The vibration-assisted diamond machining was conducted using a five-axis ultrasonic high-speed grinding/machining machine at different vibration amplitudes while conventional machining was performed using the same machine without vibration assistance. LS microstructural characterization and phase development were performed using scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques. Machining-induced edge chipping depths, areas and morphology were also characterized using the SEM and Java-based imaging software. RESULTS: All machining-induced edge chipping damages resulted from brittle fractures. The damage scales, however, depended on the material microstructures; mechanical properties associated with the fracture toughness, critical strain energy release rates, brittleness indices, and machinability indices; and ultrasonic vibration amplitudes. Pre-crystallized LS with more glass matrix and lithium metasilicate crystals yielded respective 1.8 and 1.6 times greater damage depths and specific damage areas than crystallized LS with less glass matrix and tri-crystal phases in conventional machining. Ultrasonic machining at optimized amplitudes diminished such damages by over 50 % in pre-crystallized LS and up to 13 % in crystallized LS. SIGNIFICANCE: This research highlights that ultrasonic vibration assistance at optimized conditions may advance current dental CAD/CAM machining techniques by significant suppression of edge chipping damage in pre-crystallized LS.


Assuntos
Porcelana Dentária , Lítio , Porcelana Dentária/química , Diamante , Teste de Materiais , Propriedades de Superfície , Cerâmica/química , Silicatos , Ondas Ultrassônicas
4.
Odontology ; 111(4): 883-890, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36859729

RESUMO

Ever faster workflows for the fabrication of all-ceramic restorations are of high economic interest. For that purpose, sintering protocols have been optimized for use in modern sintering furnaces, the so-called speed-sintering. However, conventional furnaces are still the most widely used equipment to sinter zirconia restorations. In this in-vitro study, we evaluated the feasibility of a speed-sintering protocol using a conventional sintering furnace to sinter different dental zirconias (stabilized with 3 mol% up to 5.4 mol% Y2O3) in comparison to a conventional sintering program. The properties evaluated were Young's modulus, Poisson's ratio, density, biaxial flexural strength, and fracture toughness. We show here that despite differences being dependent on material, the physical and mechanical properties of speed-sintered zirconia are comparable to those obtained by the conventional sintering.


Assuntos
Materiais Dentários , Ítrio , Teste de Materiais , Propriedades de Superfície , Cerâmica , Zircônio
5.
Biomater Investig Dent ; 10(1): 1-7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684391

RESUMO

This feasibility study aimed to develop a new composite material of aligned glass flakes in a polymer resin matrix inspired by the biological composite nacre. The experimental composite was processed by an adapted method of pressing a glass flake and resin monomer system. By pressing and allowing the excess monomer to flow out, the long axis of the flakes was aligned. The resultant anisotropic composite with silanized and non-silanized glass flakes were subjected to fracture toughness tests. We observed increasing fracture toughness with increasing crack extension (Δa) known as resistance curve (R-curve) behavior. Silanized specimens had higher stress intensity KR-Δa over non-silanized specimens, whereas non-silanized specimens had a much lower Young's modulus, and higher nonlinear plastic-elastic JR-Δa R-curve. In comparison with conventional composites, flake-reinforced composites can sustain continued crack growth for more significant extensions. The primary toughening mechanism seen in flake-reinforced composites was crack deviation and crack branching. We produced an anisotropic model of glass flake-reinforced composite showing elevated toughening potential and a prominent R-curve effect. The feasibility of flake reinforcement of dental composites has been shown using a relatively efficient method. The use of a biomimetic, nacre-inspired reinforcement concept might guide further research toward improvement of dental restorative materials.

6.
Materials (Basel) ; 15(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500020

RESUMO

This study evaluated the water content and sorption of direct composites over 60 days using coulometric Karl Fischer titration (KFT). Plate-shaped specimens (10 × 10 × 1 mm3 of thickness) were built up using the composites Clearfil Majesty Posterior (CM), Grandio SO (GS), and Filtek Supreme XT (FS). Water contents were determined in non-stored specimens (control) or after storage in distilled water for up to 60 days (n = 5). The amount of water transferred from the specimens heated at 200 °C (isothermal mode) was measured in the Coulometer. The water content of non-stored specimens ranged from 0.28 to 1.69 wt% (5.6 to 31.2 µg/mm3) for GS and FS, respectively. The highest values of water sorption were observed for FS (25.3 µg/mm3 after 60 days). GS and CM showed similar water sorption after 60 days (≈9 µg/mm3), but an ultimate higher water content was observed for CM (0.9 wt%; 22.0 µg/mm3) than GS (0.7 wt%; 14.8 µg/mm3). Except for CM, no significant water sorption was observed between 21 and 60 days of storage. Since all composites presented some base water content, water sorption data alone do not account for the ultimate water content in direct resin-based composites.

7.
Dent Mater ; 38(9): 1558-1563, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35927096

RESUMO

OBJECTIVES: Here we aim to provide a background on X-Ray Diffraction analysis of quartz-like crystal structures with varying amounts of Al3+ and Li+ substitution, existing confusions on their nomenclature and its implications for novel lithium silicate glass-ceramics. METHODS: We reviewed the literature dealing with modifications of the quartz crystal structure and their stuffed LiAlSi2O6 derivates, LiAlSi2O6 - SiO2 solid solutions, the terminology of such phases and criteria used to define the structure known as virgilite. Based on this information, we attempted to allocate the quartz-like phases found in CEREC TesseraTM, InitialTM LiSi Block and Amber® Mill in the range of LiAlO2 - SiO2 solid solutions. For this purpose, their lattice parameters obtained from Rietveld refinement were compared with the lattice parameters of members of the corresponding solid solutions with defined SiO2 molar fraction found in the literature. RESULTS: Based on the lattice parameters available for low quartz, high quartz and its stuffed derivatives, including LiAlSi2O6 and the mineral virgilite, a plot of the a- and c-parameters vs. the mol% SiO2 related to LiAlO2 was constructed with the literature data and the data found for the three dental lithium silicates. As per the definitions of virgilite as either LixAlxSi3-xO6, with 0.5 < x < 1 or especially as members of the LiAlSi2O6 - SiO2 solid-solution series with more than 50 mol% LiAlSi2O6, the crystal structures in CEREC TesseraTM, InitialTM LiSi Block and Amber® Mill failed to fall within the ranges of mol% SiO2 confined for virgilite. SIGNIFICANCE: Based on available literature and definitions, the quartz-like phases found in the three dental lithium silicates should be addressed as stuffed (probably low) quartz solid solutions instead of "virgilite". However determined by mineralogical practices, the term "virgilite" for parts of the LiAlSi2O6 - SiO2 solid solution is ambiguous and can be considered as arbitrary.


Assuntos
Porcelana Dentária , Lítio , Âmbar , Cerâmica , Teste de Materiais , Quartzo , Silicatos , Dióxido de Silício , Propriedades de Superfície
8.
J Mech Behav Biomed Mater ; 131: 105236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462159

RESUMO

The realization that the use of strength tests as a means to probe the bonding performance of adhesive systems to dental restorative materials suffers from inherent drawbacks has shifted efforts towards devising viable and valid fracture toughness test for that purpose. Here we introduce a new procedure to produce split-Chevron-Notched-Beam specimens that need not undergo sawing or notching after bonding, thus sparing the interface from pre-stresses. We evaluate the formal geometric factor considering the influence of the use of different materials having different elastic properties, and show that the results obtained fall within reasonable ranges measured by other established compliance calibrated methods. We demonstrate the application of this new approach for dentin-luting composite and zirconia-luting composite interfaces for different adhesive systems and pre-treatment procedures in order to probe the sensitivity of the method to different bond qualities.


Assuntos
Colagem Dentária , Adesivos Dentinários , Adesivos , Resinas Compostas/química , Análise do Estresse Dentário , Dentina , Adesivos Dentinários/química , Teste de Materiais/métodos , Cimentos de Resina/química , Estresse Mecânico , Propriedades de Superfície
9.
Dent Mater ; 38(5): 789-796, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35450703

RESUMO

OBJECTIVES: This study aimed to evaluate the water content and uptake of CAD/CAM chairside composites over 60 days using coulometric Karl Fischer (KF) titration. METHODS: Rectangular plates (10 ×10×1 mm3 of thickness) were cut from the blocks of composites Cerasmart 270 (CS), Katana Avencia (KA), Grandio Blocs (GB), and Lava Ultimate (LU). Specimens were stored in distilled water for up to 60 days at 37 °C, and non-stored specimens were used as a control (n = 5). Specimens were isothermally heated at 200 °C, and the water content was evaporated and transferred to the titration cell throughout a nitrogen gas flow. The KF coulometer determined the percentage of water in each specimen. Data were analyzed by 2-way ANOVA and Tukey`s test (α = 0.05). RESULTS: The water content of non-stored specimens ranged from 0.29 to 1.66 wt% (6.9-32.9 µg/mm3) for GB and LU, respectively. The water content increased underwater storage (0.82-2.96 wt% after 60 days). The extend of water sorption (11.9-26.1 µg/mm3) among the materials was directly related to their base water content. No additional water content increase was observed after 7 (LU and KA) or 21 (GB and CS) days. Measuring the water content in wt% or µg/mm3 affected the ranking of materials when KA and CS were analyzed. SIGNIFICANCE: Composites with higher base water content also presented higher water sorption. KF titrationshowed to be a reliable method to measure the water sorption of composites, including their base water content.


Assuntos
Cerâmica , Água , Resinas Compostas , Desenho Assistido por Computador , Teste de Materiais , Propriedades de Superfície
10.
J Adhes Dent ; 24(1): 57-66, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227047

RESUMO

PURPOSE: The present study investigated the influence of simulated intraoral conditions (increased temperature and humidity) on two different surface pretreatment methods to repair a lithium-disilicate glass-ceramic (LDS). MATERIALS AND METHODS: A total of 540 rectangular lithium-disilicate glass-ceramic bars were manufactured (3 x 7 x 9 mm; IPS e.max CAD, Ivoclar Vivadent). Further specimen preparation was performed in an incubator with controlled relative humidity (RH) and temperature to simulate three different environmental settings: laboratory conditions (LC, n = 180, 23°C, 50% RH), rubber-dam conditions (RC, n = 180, 30°C, 50% RH) or oral conditions (OC, n = 180, 32°C, 95 ± 5% RH). One-third of the bars under each condition (n = 60) were grit blasted (GBL) with alumina (35 µm at 1 bar pressure for 10 s and a working distance of 4 ± 1 cm) and primed (60 s, Monobond Plus, Ivoclar Vivadent). Another third (n = 60) were pretreated with a self-etching glass-ceramic primer (MEP, Monobond Etch & Prime, Ivoclar Vivadent). One group without surface pretreatment (n = 60, NoPT) served as a control. All pretreated surfaces were coated with Heliobond (Ivoclar Vivadent). Two bars from the same pretreatment method were luted perpendicular to each other with a resin composite to form a square adhesion area of 9 mm2 (TetricEvo Ceram, Ivoclar Vivadent), and light cured for 20 s on each side (1200 mW/cm2, Bluephase 20i, Ivoclar Vivadent). All specimens were stored for 24 h in distilled water at 37°C. Half of the specimens from each environmental setting and pretreatment method (n = 15) were thermocycled (TC, 5000 cycles, 5/55°C, 30-s dwell time), and tensile bond strength (TBS) testing was performed for all groups using an x-bar rope-assisted set-up. Data were statistically analyzed using two-way ANOVA (a = 0.05) with Bonferroni adjustment. RESULTS: Regardless of the environmental and storage conditions (24 h or TC), MEP showed a significantly higher mean TBS than GBL. A decrease in TBS was recorded in specimens under OC compared to RC and LC for both pretreatment methods independent of the storage condition. No significant difference in mean TBS was found between RC and LC within the MEP pretreatment group for the 24 h stored and thermocycled specimens. For all MEPs and GBLs, TC reduced the mean TBS in all environmental conditions. The NoPT groups showed no adhesion regardless of environmental or storage conditions. CONCLUSIONS: Increased temperature and high humidity significantly reduced TBS. However, MEP was less sensitive to environmental influences than GBL, which makes it a promising candidate for intraoral ceramic repair. These findings suggest that clinical intraoral repair of lithium-disilicate glass-ceramics should be performed using a rubber-dam, primarily when using GBL.


Assuntos
Condicionamento Ácido do Dente , Colagem Dentária , Condicionamento Ácido do Dente/métodos , Cerâmica/química , Porcelana Dentária/química , Ácido Fluorídrico/química , Teste de Materiais , Cimentos de Resina/química , Silanos/química , Propriedades de Superfície
11.
Am J Dent ; 35(1): 12-14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35316586

RESUMO

PURPOSE: To evaluate the influence of cannabidiol (CBD) oil on the color stability of resin composites. METHODS: Three different resin composites were chosen to prepare 90 disk-shaped specimens. The specimens were randomly selected to compose two test groups (classic CBD or chocolate CBD) and one control group (distilled water) for a 14-day test. Two-way ANOVA was used to evaluate the influence of the CBD oil on the color stability of the three resin composites. Tukey post-hoc test (HSD) was used to determine the statistical difference among the groups. RESULTS: ANOVA indicated statistically significant differences among the storage solutions, resin composite, and their correlations (P< 0.001). HSD indicated significant differences among resin composites after staining. No difference was noticed between the color change of the specimens immersed in classic CBD or chocolate CBD. Color differences of the resin composites were related to the hydrophilic/hydrophobic nature of the resin matrix. CLINICAL SIGNIFICANCE: CBD oil affected the color stability of all the examined resin composite specimens. Considering the obtained results, appropriate guidance should be provided to patients to prevent potential color alteration owing to the usage of CBD oil.


Assuntos
Canabidiol , Cor , Resinas Compostas/química , Humanos
12.
Dent Mater ; 38(2): 318-332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34961642

RESUMO

OBJECTIVES: Lithium-based glass-ceramics are currently dominating the landscape of dental restorative ceramic materials, with new products taking the market by storm in the last years. Though, the difference among all these new and old products is not readily accessible for the practitioner, who faces the dilemma of reaching a blind choice or trusting manufacturers' marketing brochures. To add confusion, new compositions tend to wear material terminologies inherited from vanguard dental lithium disilicates, disregarding accuracy. Here we aim to characterize such materials for their microstructure, crystalline fraction, glass chemistry and mechanical properties. METHODS: Eleven commercial dental lithium-based glass ceramics were evaluated: IPS e.max® CAD, IPS e.max® Press, Celtra® Duo, Suprinity® PC, Initial™ LiSi Press, Initial™ LiSi Block, Amber® Mill, Amber® Press, N!CE®, Obsidian® and CEREC Tessera™. The chemical composition of their base glasses was measured by X-Ray Fluorescence Spectroscopy (XRF) and Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES), as well as the composition of their residual glass by subtracting the oxides bound in the crystallized fraction, characterized by X-Ray Diffraction (XRD) and Rietveld refinement, and quantified accurately using the G-factor method (QXRD). The crystallization behavior is revealed by differential scanning calorimetry (DSC) curves. Elastic constants are provided from Resonant Ultrasound Spectroscopy (RUS) and the fracture toughness measured by the Ball-on-Three-Balls method (B3B- K Ic). The microstructure is revealed by field-emission scanning electron microscopy (FE-SEM). RESULTS: The base glasses showed a wide range of SiO2 /Li2O ratios, from 1.5 to 3.0, with the degree of depolymerization dropping from ½ to 2/3 of the initial connectivity. Materials contained Li2SiO3+Li3PO4, Li2SiO3+Li3PO4+Li2Si2O5, Li2Si2O5+Li3PO4+ Cristobalite and/or Quartz and Li2Si2O5+Li3 PO4+LiAlSi2O6, in crystallinity degrees from 45 to 80 vol%. Crystalline phases could be traced to their crystallization peaks on the DSC curves. Pressable materials and IPS e.max® CAD were the only material showing micrometric phases, with N!CE® and Initial™ LiSi Block showing solely nanometric crystals, with the rest presenting a mixture of submicrometric and nanometric particles. Fracture toughness from 1.45 to 2.30 MPa√m were measured, with the linear correlation to crystalline fraction breaking down for submicrometric and nanometric crystal phases. SIGNIFICANCE: Dental lithium-based silicate glass-ceramics cannot be all put in the same bag, as differences exist in chemical composition, microstructure, crystallinity and mechanical properties. Pressable materials still perform better mechanically than CAM/CAM blocks, which loose resistance to fracture when crystal phases enter the submicrometric and nanometric range.


Assuntos
Porcelana Dentária , Lítio , Cerâmica , Desenho Assistido por Computador , Teste de Materiais , Silicatos , Dióxido de Silício , Propriedades de Superfície
13.
J Mech Behav Biomed Mater ; 124: 104739, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34488173

RESUMO

As a predominantly lithium-metasilicate-containing glass-ceramic, Obsidian® (Glidewell Laboratories, USA) has a peculiar composition and microstructure among other dental lithium silicates, warranting an evaluation of the crystallization process to establish relationships between microstructural evolution and mechanical properties. Blocks of the pre-crystallized material were processed into slices measuring 12 × 12 × 1.5 mm3 and subjected to the mandatory crystallization firing by interruption the heating ramp at temperatures between 700 °C and 820 °C (dwell time between 0 min and 10 min). The crystallization peaks of the base and the pre-crystallized glass were obtained by differential scanning calorimetry (DSC). The coefficient of thermal expansion and the glass transition temperature were derived from differential thermal analysis (DTA). X-ray diffraction (XRD) was performed to quantify and characterize the crystal phase fraction, whose microstructural changes were visualised using FE-SEM. The ball-on-three-balls surface crack in flexure method was used to track the evolution of fracture toughness. The microstructural evolution during crystallization firing was characterized by two regimes of growth: (i) the progressive revitrification (dissolution) of the 5 µm-sized Li2SiO3 polycrystals manifested at the boundaries of nanometric single coherent scattering domains (CSDs); (ii) the non-isothermal period is marked by an Ostwald ripening process characterized by the growth of the single crystalline structures into 0.5 µm polycrystals. The decrease in the crystal fraction of Li2SiO3 crystals from 41 vol.% to 37 vol.% is accompanied by the formation of a small amount of Li3PO4 (6 vol.%), maintaining the total crystal phase fraction mostly constant. The KIc accompanied the reverse trend of crystallinity, departing from 1.63 ± 0.02 MPa√m at the pre-crystallized stage to 1.84 ± 0.06 MPa√m after 10 min at 820 °C in a linear trend. Toughening appeared counter-intuitive in view of the decreasing crystal fraction and size, to rather relate to the relaxation of the residual stresses in the interstitial glass due to the spheroidization of the initially anisotropic, elongated Li2SiO3 crystals into round, nearly equiaxed particles, as let suggest from the disappearance of the extensive microcracking.


Assuntos
Vidro , Lítio , Cerâmica , Porcelana Dentária , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície
14.
Biomater Investig Dent ; 8(1): 119-128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447944

RESUMO

PURPOSE: Here we aimed to compare two machining strategies regarding the marginal strength of CAD/CAM materials using a hoop-strength test in model sphero-cylindrical dental crowns, coupled with finite element analysis. MATERIALS AND METHODS: Five CAD/CAM materials indicated for single posterior crowns were selected, including a lithium disilicate (IPS e.max® CAD), a lithium (di)silicate (Suprinity® PC), a polymer-infiltrated ceramic scaffold (Enamic®), and two indirect resin composites (Grandio® Blocs and Lava™ Ultimate). A sphero-cylindrical model crown was built on CAD Software onto a geometrical abutment and machined using a Cerec MC XL system according to the two available protocols: rough-fast and fine-slow. Specimens were fractured using a novel hoop-strength test and analyzed using the finite element method to obtain the inner marginal strength. Data were evaluated using Weibull statistics. RESULTS: Machining strategy did not affect the marginal strength of any restorative material tested here. Ceramic materials showed a higher density of chippings in the outer margin, but this did not reduce inner marginal strength. IPS e.max® CAD showed the statistically highest marginal strength, and Enamic® and Lava™ Ultimate were the lowest. Grandio® Blocs showed higher performance than Suprinity® PC. CONCLUSIONS: The rough-fast machining strategy available in Cerec MC XL does not degrade the marginal strength of the evaluated CAD/CAD materials when compared to its fine-fast machining strategy. Depending on the material, resin composites have the potential to perform better than some glass-ceramic materials.

15.
J Mech Behav Biomed Mater ; 122: 104655, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246080

RESUMO

The aim of the present laboratory study was to mechanically characterize the interface between two dental resin-based composite (RBC) increments, and to investigate if elevated temperatures have an influence on the quality of the interface mimicking clinical filling procedure. Four RBCs (CLEARFIL MAJESTY™ Posterior, Kuraray (CMP)/Filtek™ Supreme XTE, 3M (FSX)/Grandio®SO, VOCO (GSO)/VisCalor® bulk, VOCO (VCB)) were tested with a fracture toughness test using Chevron notched beams (KI,CNB) at 23, 37 and 54 °C. KI,CNB specimens (3 × 4x25mm) with a V-shaped notch at the incremental interface were loaded until failure in a 4-point bending set-up. Failure modes were characterized using light microscopy, microstructural interface was analyzed using SEM. Statistical analysis was performed using Kolmogorov-Smirnoff test, two-way ANOVA and Tukey Post-Hoc test (p = 0.05). Mean KI,CNB ranged between 0.73 ±0.14 MPam0.5 (VCB, 23 °C) and 1.11 ± 0.11 MPam0.5 (FSX, 23 °C). The tested conventional highly filled RBCs presented fracture toughness at the incremental interface comparable to the cohesive strength of the bulk materials. VCB showed reduced interfacial fracture toughness at 23 and 37 °C, but performed well at elevated temperature of 54 °C.


Assuntos
Resinas Compostas , Análise do Estresse Dentário , Humanos , Teste de Materiais , Propriedades de Superfície , Temperatura
16.
Dent Mater ; 37(7): 1156-1167, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933272

RESUMO

OBJECTIVE: The aim of the present study was to assess the effect of water storage on the quasi-static properties and cyclic fatigue behavior of four contemporary CAD/CAM resin composite materials. METHODS: The CAD/CAM resin composites Grandio Blocs, LavaTM Ultimate, CerasmartTM and Brilliant Crios, as well as the direct resin composite Grandio SO, were evaluated. Rectangular plates were cut from the blocks or fabricated using a silicon mold to obtain specimens for fracture toughness (KIc, n = 10), biaxial strength (σ0, n = 30) and cyclic fatigue testing (n = 30). Half of the specimens was stored for 24 h in dry conditions and the other half was aged for 60 days in distilled water at 37 °C. KIc was determined using the Compact-Tension (C(T)) method and σ0 and cyclic fatigue were tested using the Ball-on-Three-Balls assembly. Additional disc-shaped specimens (n = 5) were produced to obtain water sorption curves of the materials. Weibull statistics and two-way ANOVA with Tukey's post-hoc test were used for data assessment. RESULTS: The highest water sorption was observed for LavaTM Ultimate (42.6 µg/mm3), whereas Grandio SO displayed the lowest uptake (14 µg/mm3). A statistically significant drop in KIc and σ0 was measured for all materials after water storage, except for the σ0 of CerasmartTM. Water ageing had a dissimilar effect on the cyclic fatigue behavior, increasing the slow crack growth susceptibility of LavaTM Ultimate, but decreasing it for CerasmartTM and Brilliant Crios. SIGNIFICANCE: Contemporary CAD/CAM resin composites are susceptible to water driven degradative processes, although differences in filler content and resin matrix constitution play an important role in how it impacts their mechanical properties.


Assuntos
Cerâmica , Água , Resinas Compostas , Desenho Assistido por Computador , Teste de Materiais , Propriedades de Superfície
17.
Dent Mater ; 37(3): 413-422, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33353736

RESUMO

OBJECTIVE: To investigate the influence of pre-heating different classes of dental resin composites on viscosity and stickiness at five different temperatures. METHODS: Six flowable, five conventional packable, and one thermo-viscous bulk-fill resin composites were heated up to 54°C in a plate-plate rheometer to determine their complex viscosity. Normal force measurements were carried out for the six packable materials to determine the unplugging force and unplugging work (stickiness) over the same temperature range. Data were analyzed using Kolmogorov-Smirnoff test, one-way ANOVA and Tukey Post Hoc test with α=0.05 as level of significance. RESULTS: At 23°C packable composites showed viscosity between 6.75 and 19.14kPas, while flowable composites presented significantly lower viscosities between 1.31 and 2.20kPas. Pre-heating led to a drop of 30-82% in the viscosity of packable materials. The thermo-viscous material dropped to the level of flowables at 45 and 54°C thus behaving as a packable composite at room temperature with flowable-like viscosity at higher temperatures. No statistically significant differences for viscosity were observed among flowable composites at any temperature. The unplugging force decreased for packable composites, while their unplugging work generally increased at elevated temperature. At 23°C unplugging force was measured between 7.50 and 19.18N, while pre-heating up to 54°C led to values between 2.9 and 6.2N. Regarding unplugging work at 23°C the calculated values were between 3.0 and 8.9×10-3J and at 54°C between 8.8 and 13.0×10-3J. SIGNIFICANCE: Pre-heating significantly reduced viscosity of highly viscous resin composites, while no influence was shown for flowable composites. In general stickiness, measured as unplugging work, increased at elevated temperatures. The thermo-viscous material showed low viscosity comparable to flowable composites at 45 and 54°C, yet its stickiness did not increase significantly compared to the values at 23°C.


Assuntos
Resinas Compostas , Fenômenos Mecânicos , Teste de Materiais , Temperatura , Viscosidade
18.
Dent Mater ; 37(3): 477-485, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358764

RESUMO

OBJECTIVE: Short fiber reinforced composites (SFRC) require a veneering layer of conventional composite when used as restorations in the oral environment. The current study investigates the toughening effects during the path of a preexisting crack propagating through the bilayer system as it confronts the interface, through the attempted alignment of fibers and matrix-fiber interactions in the SFRC, and the distance it travels in the SFRC. METHODS: Bilayer systems of SFRC and conventional composite were produced with aligned fibers perpendicular to load direction. Single-edge-notched bend (SENB) specimens (25 × 5 × 2.5 mm3) with pre-crack length (a) to width (W) ratios (a/W = 0.2-0.8) were produced and tested in 3-point bending configuration until complete fracture. The specific work of fracture (we) was deduced from calculating the area under the load-displacement curves. Fiber alignment was digitally evaluated from images taken from the top and side planes of the specimen. RESULTS: The toughness of the bilayer system is optimal when maximum SFRC thickness is used. EWF methods showed toughness and increasing nonessential work of fracture scaling with ligament length. A longer distance is accompanied by a higher distribution of aligned fibers bridging behind the crack wake, reducing crack driving forces at the crack tip. SIGNIFICANCE: SFRC materials provide increasing toughening potential with increasing thickness, and have the ability to be more anisotropic than other composite materials. Clinically, the layer must have a conventional composite cover layer, but which thickness does not affect toughness potential. Therefore the thickness of the conventional composite can be dictated by wear behavior.


Assuntos
Resinas Compostas , Análise do Estresse Dentário , Teste de Materiais
19.
J Dent ; 103: 103500, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33065218

RESUMO

OBJECTIVES: This study's hypothesis was to evaluate differences of the occlusal wear rate for monolithically fabricated lithium disilicate and hand-veneered zirconia crowns in-vivo. Furthermore, a comparison of the materials' clinical performance according to CDA criteria was investigated. METHODS: A total number of 15 patients in the need of full-coverage ceramic fixed dental prosthesis on molars were treated with two crowns each (n = 30), randomly assigned on the contralateral sides made of monolithic IPS e.max CAD (n = 15) and IPS e.max Ceram hand-veneered zirconia (n = 15). Clinical examination was conducted, silicone impressions were taken and plaster models fabricated at the day of crown insertion (baseline) and after 1, 2 and 3 years. The abrasion rate was digitally investigated: after model digitization with the industrial scanner Atos II, each follow-up model was superimposed with the baseline model. The wear was evaluated as the difference between two scans in terms of maximum vertical loss [mm], average decrease [mm] and volume loss [mm³]. For statistical analysis, the Mann-Whitney U test was performed and significance was set to less than 0.05. RESULTS: IPS e.max CAD crowns showed a volume loss of -0.68 mm³ after three years, while IPS e.max Ceram hand-veneered zirconia crowns showed a volumetric wear of -0.75 mm³ at the same point of time. However, no significant differences were found between both materials regarding the 3 evaluated wear parameters. The survival rate for both materials was 100 % and the clinical performance outcome was good to excellent. CONCLUSION: The two investigated materials for ceramic fixed dental prostheses showed similar wear rates and clinical performance over an in-vivo use of 3 years. CLINICAL SIGNIFICANCE: Ceramic restorations are subject to occlusal wear over time due to the natural masticatory process. Both monolithic lithium disilicate and glass-ceramic veneered zirconia copings showed clinically satisfactory results over 3 years in-situ. In terms of abrasion, they are equally well suited for clinical use.


Assuntos
Atrito Dentário , Cerâmica , Desenho Assistido por Computador , Coroas , Porcelana Dentária , Planejamento de Prótese Dentária , Humanos , Boca , Zircônio
20.
Dent Mater ; 36(8): 1086-1095, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32505538

RESUMO

OBJECTIVE: Due to past failures of orthopedic 3Y-TZP femoral implants linked to accelerated tetragonal-to-monoclinic phase transformation (t → m), the susceptibility to 'low-temperature degradation' or 'ageing' of 3Y-TZP has been advertised as detrimental to its long-term structural stability. However, no systematic mechanistic experiments on the fatigue resistance of aged 3Y-TZP under cyclic loading can support such statement. In this study, we aim to clarify this issue. METHODS: Here we evaluate the subcritical crack growth behavior of 3Y-TZP under cyclic loading after 0-50 h of accelerated ageing in an autoclave at 134 °C. The same 3Y-TZP sintered at two different temperatures (1450 °C or 1650 °C) allows for the comparison of materials containing grains with different susceptibilities to transformation. The volume fraction of surface transformed grains was measured using Raman spectroscopy, and the depth of the transformed surface layer from trenches milled with a Focus-Ion Beam. The fracture toughness before and after ageing was determined using the Chevron-notch Beam method. The quasi-static flexural strength was measured in dry conditions and the cyclic lifetime in water at 10 Hz and R-ratio = 0.3 in 4-point-bending at different applied stresses. The fatigue parameter n was derived from 3 different methods, namely SN curves, crack velocity plots and Weibull distributions. RESULTS: The progression of transformation showed linear kinetics with higher rates for the 3Y-TZP sintered at 1650 °C. Accelerated transformation induced severe crack formation within the transformed layer with parallel orientation to the surface plane, which supposedly behaved as the critical crack size population governing fracture. The stress intensity factor within the transformed layer was increased due to compressive stresses. Consequently, the fatigue parameter n increased consistently from 5 to 50 h of ageing, regardless of the derivation method, suggesting an increased resistance against crack growth during cyclic loading in bending. SIGNIFICANCE: Our results do not support the long suggested negative clinical implications of LTD regarding mechanical performance, to the contrary, LTD seems to increase the resistance against subcritical crack growth in a humid environment in bending.


Assuntos
Cerâmica , Zircônio , Falha de Equipamento , Teste de Materiais , Propriedades de Superfície , Temperatura , Ítrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA