Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Med ; 9(1): 67, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724449

RESUMO

BACKGROUND: Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. METHODS: Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. RESULTS: Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. CONCLUSIONS: While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.


Assuntos
Deficiências do Desenvolvimento/metabolismo , Éxons , Guanilato Quinases/genética , Deficiência Intelectual/metabolismo , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Animais , Criança , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Proteínas de Membrana/genética , Camundongos
2.
Eur J Paediatr Neurol ; 21(3): 475-484, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28027854

RESUMO

BACKGROUND: More than 100 X-linked intellectual disability (X-LID) genes have been identified to be involved in 10-15% of intellectual disability (ID). METHOD: To identify novel possible candidates, we selected 18 families with a male proband affected by isolated or syndromic ID. Pedigree and/or clinical presentation suggested an X-LID disorder. After exclusion of known genetic diseases, we identified seven cases whose mother showed a skewed X-inactivation (>80%) that underwent whole exome sequencing (WES, 50X average depth). RESULTS: WES allowed to solve the genetic basis in four cases, two of which (Coffin-Lowry syndrome, RPS6K3 gene; ATRX syndrome, ATRX gene) had been missed by previous clinical/genetics tests. One further ATRX case showed a complex phenotype including pontocerebellar atrophy (PCA), possibly associated to an unidentified PCA gene mutation. In a case with suspected Lujan-Fryns syndrome, a c.649C>T (p.Pro217Ser) MECP2 missense change was identified, likely explaining the neurological impairment, but not the marfanoid features, which were possibly associated to the p.Thr1020Ala variant in fibrillin 1. Finally, a c.707T>G variant (p.Phe236Cys) in the DMD gene was identified in a patient retrospectively recognized to be affected by Becker muscular dystrophy (BMD, OMIM 300376). CONCLUSION: Overall, our data show that WES may give hints to solve complex ID phenotypes with a likely X-linked transmission, and that a significant proportion of these orphan conditions might result from concomitant mutations affecting different clinically associated genes.


Assuntos
Exoma/genética , Deficiência Intelectual/genética , Inativação do Cromossomo X/genética , Adolescente , Criança , Síndrome de Coffin-Lowry/genética , Anormalidades Craniofaciais/genética , Genes Ligados ao Cromossomo X/genética , Predisposição Genética para Doença , Humanos , Masculino , Síndrome de Marfan/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Linhagem , Fenótipo , Estudos Retrospectivos , Análise de Sequência de DNA , Talassemia alfa/genética
3.
Am J Med Genet A ; 170(7): 1772-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27108886

RESUMO

Whole exome sequencing (WES) is a powerful tool to identify clinically undefined forms of intellectual disability/developmental delay (ID/DD), especially in consanguineous families. Here we report the genetic definition of two sporadic cases, with syndromic ID/DD for whom array-Comparative Genomic Hybridization (aCGH) identified a de novo copy number variant (CNV) of uncertain significance. The phenotypes included microcephaly with brachycephaly and a distinctive facies in one proband, and hypotonia in the legs and mild ataxia in the other. WES allowed identification of a functionally relevant homozygous variant affecting a known disease gene for rare syndromic ID/DD in each proband, that is, c.1423C>T (p.Arg377*) in the Trafficking Protein Particle Complex 9 (TRAPPC9), and c.154T>C (p.Cys52Arg) in the Very Low Density Lipoprotein Receptor (VLDLR). Four mutations affecting TRAPPC9 have been previously reported, and the present finding further depicts this syndromic form of ID, which includes microcephaly with brachycephaly, corpus callosum hypoplasia, facial dysmorphism, and overweight. VLDLR-associated cerebellar hypoplasia (VLDLR-CH) is characterized by non-progressive congenital ataxia and moderate-to-profound intellectual disability. The c.154T>C (p.Cys52Arg) mutation was associated with a very mild form of ataxia, mild intellectual disability, and cerebellar hypoplasia without cortical gyri simplification. In conclusion, we report two novel cases with rare causes of autosomal recessive ID, which document how interpreting de novo array-CGH variants represents a challenge in consanguineous families; as such, clinical WES should be considered in diagnostic testing. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Receptores de LDL/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Cerebelo/anormalidades , Cerebelo/fisiopatologia , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/fisiopatologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular , Microcefalia/genética , Microcefalia/fisiopatologia , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Linhagem , Fenótipo
4.
Am J Med Genet B Neuropsychiatr Genet ; 171B(2): 290-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26620927

RESUMO

Copy number variation (CNV) has been associated with a variety of neuropsychiatric disorders, including intellectual disability/developmental delay (ID/DD), autism spectrum disorder (ASD), and schizophrenia (SCZ). Often, individuals carrying the same pathogenic CNV display high clinical variability. By array-CGH analysis, we identified a novel familial 3q29 deletion (1.36 Mb), centromeric to the 3q29 deletion region, which manifests with variable expressivity. The deletion was identified in a 3-year-old girl diagnosed with ID/DD and autism and segregated in six family members, all affected by severe psychiatric disorders including schizophrenia, major depression, anxiety disorder, and personality disorder. All individuals carrying the deletion were overweight or obese, and anomalies compatible with optic atrophy were observed in three out of four cases examined. Amongst the 10 genes encompassed by the deletion, the haploinsufficiency of Optic Atrophy 1 (OPA1), associated with autosomal dominant optic atrophy, is likely responsible for the ophthalmological anomalies. We hypothesize that the haploinsufficiency of ATPase type 13A4 (ATP13A4) and/or Hairy/Enhancer of Split Drosophila homolog 1 (HES1) contribute to the neuropsychiatric phenotype, while HES1 deletion might underlie the overweight/obesity. In conclusion, we propose a novel contiguous gene syndrome due to a proximal 3q29 deletion variably associated with autism, ID/DD, psychiatric traits and overweight/obesity.


Assuntos
Transtorno Autístico/genética , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Deficiência Intelectual/genética , Obesidade/genética , Transtornos Psicóticos/genética , Adulto , Idoso , Transtorno Autístico/complicações , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Transtornos Psicóticos/complicações
5.
Mol Cytogenet ; 7(1): 82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25435912

RESUMO

BACKGROUND: Conventional karyotyping (550 bands resolution) is able to identify chromosomal aberrations >5-10 Mb, which represent a known cause of intellectual disability/developmental delay (ID/DD) and/or multiple congenital anomalies (MCA). Array-Comparative Genomic Hybridization (array-CGH) has increased the diagnostic yield of 15-20%. RESULTS: In a cohort of 700 ID/DD cases with or without MCA, including 15 prenatal diagnoses, we identified a subgroup of seven patients with a normal karyotype and a large complex rearrangement detected by array-CGH (at least 6, and up to 18 Mb). FISH analysis could be performed on six cases and showed that rearrangements were translocation derivatives, indistinguishable from a normal karyotype as they involved a similar band pattern and size. Five were inherited from a parent with a balanced translocation, whereas two were apparently de novo. Genes spanning the rearrangements could be associated with some phenotypic features in three cases (case 3: DOCK8; case 4: GATA3, AKR1C4; case 6: AS/PWS deletion, CHRNA7), and in two, likely disease genes were present (case 5: NR2F2, TP63, IGF1R; case 7: CDON). Three of our cases were prenatal diagnoses with an apparently normal karyotype. CONCLUSIONS: Large complex rearrangements of up to 18 Mb, involving chromosomal regions with similar size and band appearance may be overlooked by conventional karyotyping. Array-CGH allows a precise chromosomal diagnosis and recurrence risk definition, further confirming this analysis as a first tier approach to clarify molecular bases of ID/DD and/or MCA. In prenatal tests, array-CGH is confirmed as an important tool to avoid false negative results due to karyotype intrinsic limit of detection.

6.
Eur J Med Genet ; 55(3): 222-4, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22365944

RESUMO

We report a patient with a moderate mental retardation, afebrile seizure, mild dysmorphic features and type 2 diabetes mellitus with mild obesity and metabolic syndrome. Array-CGH analysis revealed a de novo 790-830 kb duplication on chromosome 17p13.1, not reported so far. Among the approximately 50 genes involved in the rearrangement, neuroligin 2 (NLGN2) and ephrin B3 (EFNB3) are candidates for the mental retardation phenotype. NLGN2 may therefore be a novel candidate gene for mental retardation or autistic spectrum disorder, joining other members of the neurexin/neuroligin network. Moreover, GLUT4, a member of the solute carrier family 2, may play a role in the patient's type 2 diabetes.


Assuntos
Trissomia/genética , Adolescente , Cromossomos Humanos Par 17/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Hipotireoidismo/genética , Deficiência Intelectual/genética , Masculino , Síndrome Metabólica/genética , Mosaicismo , Convulsões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA