Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0284972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549142

RESUMO

It is clear that the gastrointestinal tract influences metabolism and immune function. Most studies to date have used male test subjects, with a focus on effects of obesity and dietary challenges. Despite significant physiological maternal adaptations that occur across gestation, relatively few studies have examined pregnancy-related gut function. Moreover, it remains unknown how pregnancy and diet can interact to alter intestinal barrier function. In this study, we investigated the impacts of pregnancy and adiposity on maternal intestinal epithelium morphology, in vivo intestinal permeability, and peripheral blood immunophenotype, using control (CTL) and high-fat (HF) fed non-pregnant female mice and pregnant mice at mid- (embryonic day (E)14.5) and late (E18.5) gestation. We found that small intestine length increased between non-pregnant mice and dams at late-gestation, but ileum villus length, and ileum and colon crypt depths and goblet cell numbers remained similar. Compared to CTL-fed mice, HF-fed mice had reduced small intestine length, ileum crypt depth and villus length. Goblet cell numbers were only consistently reduced in HF-fed non-pregnant mice. Pregnancy increased in vivo gut permeability, with a greater effect at mid- versus late-gestation. Non-pregnant HF-fed mice had greater gut permeability, and permeability was also increased in HF-fed pregnant dams at mid but not late-gestation. The impaired maternal gut barrier in HF-fed dams at mid-gestation coincided with changes in maternal blood and bone marrow immune cell composition, including an expansion of circulating inflammatory Ly6Chigh monocytes. In summary, pregnancy has temporal effects on maternal intestinal structure and barrier function, and on peripheral immunophenotype, which are further modified by HF diet-induced maternal adiposity. Maternal adaptations in pregnancy are thus vulnerable to excess maternal adiposity, which may both affect maternal and child health.


Assuntos
Adiposidade , Obesidade , Gravidez , Camundongos , Animais , Masculino , Feminino , Humanos , Adiposidade/fisiologia , Dieta Hiperlipídica/efeitos adversos , Íleo , Permeabilidade , Fenômenos Fisiológicos da Nutrição Materna
3.
Sci Rep ; 9(1): 17621, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772245

RESUMO

We investigated whether diet-induced changes in the maternal intestinal microbiota were associated with changes in bacterial metabolites and their receptors, intestinal inflammation, and placental inflammation at mid-gestation (E14.5) in female mice fed a control (17% kcal fat, n = 7) or a high-fat diet (HFD 60% kcal fat, n = 9; ad libitum) before and during pregnancy. Maternal diet-induced obesity (mDIO) resulted in a reduction in maternal fecal short-chain fatty acid producing Lachnospiraceae, lower cecal butyrate, intestinal antimicrobial peptide levels, and intestinal SCFA receptor Ffar3, Ffar2 and Hcar2 transcript levels. mDIO increased maternal intestinal pro-inflammatory NFκB activity, colonic CD3+ T cell number, and placental inflammation. Maternal obesity was associated with placental hypoxia, increased angiogenesis, and increased transcript levels of glucose and amino acid transporters. Maternal and fetal markers of gluconeogenic capacity were decreased in pregnancies complicated by obesity. We show that mDIO impairs bacterial metabolite signaling pathways in the mother at mid-gestation, which was associated with significant structural changes in placental blood vessels, likely as a result of placental hypoxia. It is likely that maternal intestinal changes contribute to adverse maternal and placental adaptations that, via alterations in fetal hepatic glucose handling, may impart increased risk of metabolic dysfunction in offspring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Feto/metabolismo , Glucose/metabolismo , Intestinos/patologia , Obesidade/metabolismo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Animais , Butiratos/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Hipóxia Celular , Citocinas/metabolismo , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Idade Gestacional , Gluconeogênese , Inflamação , Intestinos/microbiologia , Macrófagos/fisiologia , Camundongos , Obesidade/etiologia , Placenta/irrigação sanguínea , Placenta/patologia , Gravidez , Receptores Toll-Like/metabolismo , beta-Defensinas/metabolismo
4.
J Physiol ; 597(12): 3029-3051, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31081119

RESUMO

KEY POINTS: Maternal obesity has been associated with shifts in intestinal microbiota, which may contribute to impaired barrier function Impaired barrier function may expose the placenta and fetus to pro-inflammatory mediators We investigated the impacts of diet-induced obesity in mice on maternal and fetal intestinal structure and placental vascularization Diet-induced obesity decreased maternal intestinal short chain fatty acids and their receptors, impaired gut barrier integrity and was associated with fetal intestinal inflammation. Placenta from obese mothers showed blood vessel immaturity, hypoxia, increased transcript levels of inflammation, autophagy and altered levels of endoplasmic reticulum stress markers. These data suggest that maternal intestinal changes probably contribute to adverse placental adaptations and also impart an increased risk of obesity in the offspring via alterations in fetal gut development. ABSTRACT: Shifts in maternal intestinal microbiota have been implicated in metabolic adaptations to pregnancy. In the present study, we generated cohorts of female C57BL/6J mice fed a control (17% kcal fat, n = 10-14) or a high-fat diet (HFD 60% kcal from fat, n = 10-14; ad libitum) aiming to investigate the impact on the maternal gut microbiota, intestinal inflammation and gut barrier integrity, placental inflammation and fetal intestinal development at embryonic day 18.5. HFD was associated with decreased relative abundances of short-chain fatty acid (SCFA) producing genera during pregnancy. These diet-induced shifts paralleled decreased maternal intestinal mRNA levels of SCFA receptor Gpr41, modestly decreased cecal butyrate, and altered mRNA levels of inflammatory cytokines and immune cell markers in the maternal intestine. Maternal HFD resulted in impaired gut barrier integrity, with corresponding increases in circulating maternal levels of lipopolysaccharide (LPS) and tumour necrosis factor. Placentas from HFD dams demonstrated blood vessel immaturity and hypoxia; decreased free carnitine, acylcarnitine derivatives and trimethylamine-N-oxide; and altered mRNA levels of inflammation, autophagy, and ER stress markers. HFD exposed fetuses had increased activation of nuclear factor-kappa B and inhibition of the unfolded protein response in the developing intestine. Taken together, these data suggest that HFD intake prior to and during pregnancy shifts the composition of the maternal gut microbiota and impairs gut barrier integrity, resulting in increased maternal circulating LPS, which may ultimate contribute to changes in placental vascularization and fetal gut development.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Hipóxia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Obesidade , Placenta/irrigação sanguínea , Animais , Feminino , Desenvolvimento Fetal , Feto , Hipóxia/metabolismo , Hipóxia/microbiologia , Hipóxia/fisiopatologia , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/fisiopatologia , Placenta/metabolismo , Gravidez
5.
J Endocrinol ; 228(3): 179-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26698568

RESUMO

Growth and pubertal timing differ in boys and girls. Variants in/near LIN28B associate with age at menarche (AAM) in genome-wide association studies and some AAM-related variants associate with growth in a sex-specific manner. Sex-specific growth patterns in response to Lin28b perturbation have been detected in mice, and overexpression of Lin28a has been shown to alter pubertal timing in female mice. To investigate further how Lin28a and Lin28b affect growth and puberty in both males and females, we evaluated Lin28b loss-of-function (LOF) mice and Lin28a gain-of-function (GOF) mice. Because both Lin28a and Lin28b can act via the conserved microRNA let-7, we also examined let-7 GOF mice. As reported previously, Lin28b LOF led to lighter body weights only in male mice while Lin28a GOF yielded heavier mice of both sexes. Let-7 GOF mice weighed less than controls, and males were more affected than females. Timing of puberty was assessed by vaginal opening (VO) and preputial separation (PS). Male Lin28b LOF and male let-7 GOF, but not female, mice displayed alteration of pubertal timing, with later PS than controls. In contrast, both male and female Lin28a GOF mice displayed late onset of puberty. Together, these data point toward a complex system of regulation by Lin28a, Lin28b, and let-7, in which Lin28b and let-7 can impact both puberty and growth in a sex-specific manner, raising the possibility that this pathway may contribute to differential regulation of male and female growth and puberty in humans.


Assuntos
Peso Corporal , Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Caracteres Sexuais , Maturidade Sexual , Animais , Composição Corporal , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica , Glucose/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/fisiologia , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA