Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Leukemia ; 38(6): 1287-1298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575671

RESUMO

The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.


Assuntos
Leucemia Linfocítica Crônica de Células B , NF-kappa B , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Animais , Camundongos , Humanos , NF-kappa B/metabolismo , Proliferação de Células , Piperidinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Movimento Celular
2.
J Cell Mol Med ; 27(4): 576-586, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747338

RESUMO

Chronic Lymphocytic Leukaemia (CLL) is the most common adult B-cell leukaemia and despite improvement in patients' outcome, following the use of targeted therapies, it remains incurable. CLL supportive microenvironment plays a key role in both CLL progression and drug resistance through signals that can be sensed by the main components of the focal adhesion complex, such as FAK and PYK2 kinases. Dysregulations of both kinases have been observed in several metastatic cancers, but their role in haematological malignancies is still poorly defined. We characterized FAK and PYK2 expression and observed that PYK2 expression is higher in leukaemic B cells and its overexpression significantly correlates with their malignant transformation. When targeting both FAK and PYK2 with the specific inhibitor defactinib, we observed a dose-response effect on CLL cells viability and survival. In vivo treatment of a CLL mouse model showed a decrease of the leukaemic clone in all the lymphoid organs along with a significant reduction of macrophages and of the spleen weight and size. Our results first define a possible prognostic value for PYK2 in CLL, and show that both FAK and PYK2 might become putative targets for both CLL and its microenvironment (e.g. macrophages), thus paving the way to an innovative therapeutic strategy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/patologia , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Linfócitos B/metabolismo , Microambiente Tumoral
3.
STAR Protoc ; 3(3): 101601, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990738

RESUMO

In this protocol, we describe how to generate 3D culture surrogates of chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) bone marrow microenvironments. We detail the use of culturing scaffolds populated with BM stromal cells and tumor cells in the RCCS™ bioreactor. This 3D culture can efficiently recapitulate tumor-stroma crosstalk and allows the testing of drugs such as ibrutinib and bortezomib. Moreover, this protocol can be used for the generation of other and more complex tumor microenvironments. For complete details on the use and execution of this protocol, please refer to Belloni et al. (2018) and Barbaglio et al. (2021).


Assuntos
Medula Óssea , Mieloma Múltiplo , Medula Óssea/patologia , Bortezomib , Técnicas de Cultura de Células , Humanos , Mieloma Múltiplo/patologia , Células Estromais/patologia , Microambiente Tumoral
5.
Haematologica ; 106(9): 2334-2344, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32732361

RESUMO

Chronic Lymphocytic Leukemia (CLL) cells disseminate into supportive tissue microenvironments. To investigate the mechanisms involved in leukemic cell tissue retention we developed a 3D bone marrow (BM) microenvironment that recreates CLL - BM-stromal cells interactions inside a scaffold within a bioreactor. Our system allows the parallel analysis of CLL cells retained inside the scaffold and those released in the presence/absence of pharmacological agents, mimicking tissue and circulating cell compartments, respectively. CLL cells can be retained within the scaffold only in the presence of microenvironmental elements, which through direct contact down-regulate the expression of HS1 cytoskeletal protein in CLL cells. Consist with this, the expression of HS1 was lower in CLL cells obtained from patients' BM versus CLL cells circulating in the PB. Moreover, we demonstrate that CLL cells with inactive-HS1, impaired cytoskeletal activity and a more aggressive phenotype are more likely retained within the scaffold despite the presence of Ibrutinib, whose mobilizing effect is mainly exerted on those with active-HS1, ensuing dynamic cytoskeletal activity. This differential effect would not otherwise be assessable in a traditional 2D system and may underlie a distinctive resistance of single CLL clones. Notably, CLL cells mobilized in the peripheral blood of patients during Ibrutinib therapy exhibited activated HS1, underscoring that our model reliably mirrors the in vivo situation. The 3D model described herein is suitable to reproduce and identify critical CLL-BM interactions, opening the way to pathophysiological studies and the evaluation of novel targeted therapies in an individualized manner.


Assuntos
Leucemia Linfocítica Crônica de Células B , Medula Óssea , Técnicas de Cocultura , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazóis , Pirimidinas , Microambiente Tumoral
6.
Haematologica ; 105(10): 2440-2447, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054085

RESUMO

Therapeutic strategies designed to tinker with cancer cell DNA damage response have led to the widespread use of PARP inhibitors for BRCA1/2-mutated cancers. In the haematological cancer multiple myeloma, we sought to identify analogous synthetic lethality mechanisms that could be leveraged upon established cancer treatments. The combination of ATR inhibition using the compound VX-970 with a drug eliciting interstrand cross-links, melphalan, was tested in in vitro, ex vivo, and most notably in vivo models. Cell proliferation, induction of apoptosis, tumor growth and animal survival were assessed. The combination of ATM inhibition with a drug triggering double strand breaks, doxorucibin, was also probed. We found that ATR inhibition is strongly synergistic with melphalan, even in resistant cells. The combination was dramatically effective in targeting myeloma primary patient cells and cell lines reducing cell proliferation and inducing apoptosis. The combination therapy significantly reduced tumor burden and prolonged survival in animal models. Conversely, ATM inhibition only marginally impacted on myeloma cell survival, even in combination with doxorucibin at high doses. These results indicate that myeloma cells extensively rely on ATR, but not on ATM, for DNA repair. Our findings posit that adding an ATR inhibitor such as VX-970 to established therapeutic regimens may provide a remarkably broad benefit to myeloma patients.


Assuntos
Mieloma Múltiplo , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , Humanos , Melfalan/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética
7.
Blood Adv ; 3(12): 1891-1896, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31227476
9.
Haematologica ; 103(4): 707-716, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29326121

RESUMO

Multiple myeloma develops primarily inside the bone marrow microenvironment, that confers pro-survival signals and drug resistance. 3D cultures that reproduce multiple myeloma-bone marrow interactions are needed to fully investigate multiple myeloma pathogenesis and response to drugs. To this purpose, we exploited the 3D Rotary Cell Culture System bioreactor technology for myeloma-bone marrow co-cultures in gelatin scaffolds. The model was validated with myeloma cell lines that, as assessed by histochemical and electron-microscopic analyses, engaged contacts with stromal cells and endothelial cells. Consistently, pro-survival signaling and also cell adhesion-mediated drug resistance were significantly higher in 3D than in 2D parallel co-cultures. The contribution of the VLA-4/VCAM1 pathway to resistance to bortezomib was modeled by the use of VCAM1 transfectants. Soluble factor-mediated drug resistance could be also demonstrated in both 2D and 3D co-cultures. The system was then successfully applied to co-cultures of primary myeloma cells-primary myeloma bone marrow stromal cells from patients and endothelial cells, allowing the development of functional myeloma-stroma interactions and MM cell long-term survival. Significantly, genomic analysis performed in a high-risk myeloma patient demonstrated that culture in bioreactor paralleled the expansion of the clone that ultimately dominated in vivo Finally, the impact of bortezomib on myeloma cells and on specialized functions of the microenvironment could be evaluated. Our findings indicate that 3D dynamic culture of reconstructed human multiple myeloma microenvironments in bioreactor may represent a useful platform for drug testing and for studying tumor-stroma molecular interactions.


Assuntos
Medula Óssea/patologia , Comunicação Celular , Técnicas de Cultura de Células , Modelos Biológicos , Mieloma Múltiplo/patologia , Reatores Biológicos , Bortezomib/farmacologia , Adesão Celular , Sobrevivência Celular , Técnicas de Cocultura , Resistência a Medicamentos , Células Endoteliais , Gelatina , Humanos , Mieloma Múltiplo/tratamento farmacológico , Células Estromais , Microambiente Tumoral
10.
Methods Mol Biol ; 1612: 177-190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634943

RESUMO

3D-dynamic culture models represent an invaluable tool for a better comprehension of tumor biology and drug response, as they accurately re-create/preserve the complex multicellular organization and the dynamic interactions of the parental microenvironment, which can affect tumor fate and drug sensitivity. Hence, development of models that recapitulate tumor within its embedding microenvironment is an imperative need. This is particularly true for multiple myeloma (MM), which survives almost exclusively in the bone marrow (BM). To meet this need, we have previously exploited and validated an innovative 3D-dynamic culture technology, based on the use of the Rotary Cell Culture System (RCCS ™) bioreactor . Here, we describe, step by step, the procedures we have employed to establish two human MM ex vivo models, i.e., the culture of human BM-derived isolated cells and of MM tissues from patients.


Assuntos
Técnicas de Cultura de Células/instrumentação , Modelos Biológicos , Mieloma Múltiplo/patologia , Medula Óssea/patologia , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos , Engenharia Tecidual , Microambiente Tumoral
11.
Oncoimmunology ; 5(7): e1181244, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622037

RESUMO

Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis (LCH) characterized by tissue infiltration with CD68(+) foamy histiocytes. TNF-related chronic inflammation and mutations in the MAP kinase signaling pathway in histiocytes are recognized as the two major pathogenic events. Among pleomorphic clinical manifestations, cardiovascular involvement is frequent and prognostically relevant. Evaluation of ECD clinical course and response to treatment is, however, still challenging. Taking advantage of the two largest cohorts of ECD patients worldwide, we investigated the relevance and the potential of circulating Chromogranin A (CgA), a pro-hormone involved in cardiovascular homeostasis and inflammation, as a biomarker of response to therapy in ECD. Consistent with other TNF-related inflammatory diseases, we found that not only TNF-α and soluble TNF-Receptors (sTNF-Rs), but also CgA plasma levels were significantly increased in ECD patients compared to controls. CgA, but not sTNF-Rs, discriminated cardiovascular involvement in ECD patients and correlated with pro-Brain Natriuretic Peptide (pro-BNP). In a single case, where a cardiac biopsy was available, CgA was found expressed by cardiomyocytes but not by infiltrating histiocytes. In four ECD patients, where serial determination of these parameters was obtained, the kinetics of sTNF-Rs and CgA paralleled response to therapy with anti-cytokine inhibitors; specifically, sTNF-Rs overlapped TNF-associated inflammation, while CgA, together with pro-BNP, closely mirrored response of cardiac disease. Our data indicate that both sTNF-Rs and CgA are linked to ECD pathophysiology. Moreover, CgA, in concert with pro-BNP, can be further exploited to fulfill the unmet clinical need of non-invasive reliable biomarkers of cardiac disease in these patients.

12.
Blood ; 127(16): 1987-97, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26825709

RESUMO

Hypoxia-inducible transcription factors (HIFs) regulate a wide array of adaptive responses to hypoxia and are often activated in solid tumors and hematologic malignancies due to intratumoral hypoxia and emerging new layers of regulation. We found that in chronic lymphocytic leukemia (CLL), HIF-1α is a novel regulator of the interaction of CLL cells with protective leukemia microenvironments and, in turn, is regulated by this interaction in a positive feedback loop that promotes leukemia survival and propagation. Through unbiased microarray analysis, we found that in CLL cells, HIF-1α regulates the expression of important chemokine receptors and cell adhesion molecules that control the interaction of leukemic cells with bone marrow and spleen microenvironments. Inactivation of HIF-1α impairs chemotaxis and cell adhesion to stroma, reduces bone marrow and spleen colonization in xenograft and allograft CLL mouse models, and prolongs survival in mice. Of interest, we found that in CLL cells, HIF-1α is transcriptionally regulated after coculture with stromal cells. Furthermore, HIF-1α messenger RNA levels vary significantly within CLL patients and correlate with the expression of HIF-1α target genes, including CXCR4, thus further emphasizing the relevance of HIF-1α expression to CLL pathogenesis.


Assuntos
Comunicação Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Leucemia Linfocítica Crônica de Células B/patologia , Microambiente Tumoral/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Adesão Celular/genética , Quimiotaxia de Leucócito/genética , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/metabolismo , Baço/patologia , Células Estromais/metabolismo , Células Estromais/patologia
13.
Exp Cell Res ; 330(1): 1-12, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25447443

RESUMO

Angiopoietin-2 (Ang-2) is involved in angiogenesis in both solid and hematological malignancies. In Multiple Myeloma (MM), serum Ang-2 correlates with disease progression and response to therapy. To address the patho-physiologic role of Ang-2 in MM associated angiogenesis, we used sera from patients with active MM, which contained significantly higher levels of the molecule, compared to those from patients with smoldering MM and Monoclonal Gammopathy of Undetermined Significance. MM Bone Marrow (BM) sera with high Ang-2 concentration specifically contributed to endothelial cell (EC) activation, while Ang-1 containing sera maintained EC stabilization. The functional dichotomy of Ang-1 and Ang-2 was confirmed by the triggering of distinctive signaling pathways down-stream the common Tie-2 receptor, i.e., the Akt or the ERK- phosphorylation pathway. Notably, Ang-2 but not VEGF serum levels correlated with BM micro-vessel density, further underscoring the key role of Ang-2 in angiogenesis. Western Blot, RT-PCR and immunocytochemistry identified MMEC as the major source of Ang-2, at variance with MM cells and CD14(+) BM monocytes. These data suggest that Ang-2 produced in the BM milieu may contribute to MM angiogenesis and suggest that the molecule can be further exploited both as angiogenesis biomarker and as a potential therapeutic target.


Assuntos
Angiopoietina-2/metabolismo , Medula Óssea/metabolismo , Mieloma Múltiplo/metabolismo , Neovascularização Patológica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiopoietina-1/sangue , Angiopoietina-1/metabolismo , Angiopoietina-2/sangue , Estudos de Casos e Controles , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Receptor TIE-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue
15.
PLoS One ; 8(8): e71613, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990965

RESUMO

Three-dimensional (3-D) culture models are emerging as invaluable tools in tumor biology, since they reproduce tissue-specific structural features and cell-cell interactions more accurately than conventional 2-D cultures. Multiple Myeloma, which depends on myeloma cell-Bone Marrow microenvironment interactions for development and response to drugs, may particularly benefit from such an approach. An innovative 3-D dynamic culture model based on the use of the RCCS™ Bioreactor was developed to allow long-term culture of myeloma tissue explants. This model was first validated with normal and pathological explants, then applied to tissues from myeloma patients. In all cases, histological examination demonstrated maintenance of viable myeloma cells inside their native microenvironment, with an overall well preserved histo-architecture including bone lamellae and vessels. This system was then successfully applied to evaluate the cytotoxic effects exerted by the proteasome inhibitor Bortezomib not only on myeloma cells but also on angiogenic vessels. Moreover, as surrogate markers of specialized functions expressed by myeloma cells and microenvironment, ß2 microglobulin, VEGF and Angiopoietin-2 levels, as well as Matrix Metalloproteases activity, were evaluated in supernatants from 3D cultures and their levels reflected the effects of Bortezomib treatment. Notably, determination of ß2 microglobulin levels in supernatants from Bortezomib-treated samples and in patients'sera following Bortezomib-based therapies disclosed an overall concordance in the response to the drug ex vivo and in vivo. Our findings indicate, as a proof of principle, that 3-D, RCCS™ bioreactor-based culture of tissue explants can be exploited for studying myeloma biology and for a pre-clinical approach to patient-targeted therapy.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Mieloma Múltiplo/metabolismo , Adulto , Idoso , Angiopoietina-2/metabolismo , Animais , Células da Medula Óssea/citologia , Osso e Ossos/patologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Comunicação Celular , Feminino , Marcadores Genéticos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tíbia/patologia , Células Tumorais Cultivadas/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microglobulina beta-2/metabolismo
16.
BMC Nephrol ; 12: 61, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22081953

RESUMO

BACKGROUND: Ozonated autohemotherapy (OA) has been previously successfully used in the treatment of patients affected by peripheral occlusive arterial disease. OA consists of an intrafemoral reinfusion of autologous blood previously exposed to a mixture of oxygen/ozone (O2/O3). This study analyzes the effects of OA in protecting rat kidney from ischemia and ischemia/reperfusion damage. METHODS: We performed OA 30 min before the induction of 60 min renal ischemia or at the induction of 60 min postischemic reperfusion in rats subjected to unilateral nephrectomy. In addition, to evidence the possible protection induced by O2/O3 on endothelial functions, the present study analyzes the in vitro effects of O2/O3 on oxygen consumption by human umbilical vein endothelial cells (HUVEC). RESULTS: 1) OA preserves rat kidney functions and architecture, as demonstrated by the improved levels of serum creatinine and blood urea nitrogen and by histology; 2) such protection does not correlate with the increase of plasmatic nitric oxide, but is compatible with a focal renal increase of renal ßNADPH-diaphorase; 3) treatment of HUVEC with O2/O3 significantly increases both the rate of oxygen consumption and the mitochondrial activity assessed by confocal microscopy. CONCLUSION: The preservation of the mitochondrial activity of endothelium could in vivo limit the endothelial dysfunction provoked by the Isc or Isc/R processes.


Assuntos
Transfusão de Sangue Autóloga/métodos , Rim/irrigação sanguínea , Rim/fisiopatologia , Nefrectomia/efeitos adversos , Ozônio/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/fisiopatologia , Animais , Infusões Intra-Arteriais , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/etiologia , Resultado do Tratamento
17.
Exp Cell Res ; 316(6): 1010-8, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19917281

RESUMO

The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.


Assuntos
Autofagia/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácidos Borônicos/uso terapêutico , Bortezomib , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/fisiologia , Células Endoteliais/ultraestrutura , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Inibidores de Proteases/uso terapêutico , Pirazinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
18.
FASEB J ; 21(12): 3052-62, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17566084

RESUMO

UNLABELLED: A growing body of evidence suggests that chromogranin A (CgA), a secretory protein released by many neuroendocrine cells and frequently used as a diagnostic and prognostic serum marker for a range of neuroendocrine tumors, is a precursor of several bioactive fragments. This work was undertaken to assess whether the N-terminal fragment CgA(1-76) (called vasostatin I) can inhibit the proangiogenic activity of vascular endothelial growth factor (VEGF), a factor involved in tumor growth. The effect of recombinant human vasostatin I (VS-1) on VEGF-induced human umbilical endothelial cells (HUVEC) signaling, proliferation, migration, and organization has been investigated. We have found that VS-1 (3 microg/ml; 330 nM) can inhibit VEGF-induced ERK phosphorylation, as well as cell migration, proliferation, morphogenesis, and invasion of collagen gels in various in vitro assays. In addition, VS-1 could inhibit the formation of capillary-like structures in Matrigel plugs in a rat model. VS-1 could also inhibit basal ERK phosphorylation and motility of HUVEC, leading to a more quiescent state in the absence of VEGF, without inducing apoptotic or necrotic effects. CONCLUSION: These findings suggest that vasostatin I may play a novel role as a regulator of endothelial cell function and homeostasis.


Assuntos
Movimento Celular , Proliferação de Células , Cromogranina A/metabolismo , Células Endoteliais/fisiologia , Fragmentos de Peptídeos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Forma Celular , Cromogranina A/genética , Colágeno , Combinação de Medicamentos , Células Endoteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Homeostase , Humanos , Laminina , Fragmentos de Peptídeos/genética , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteoglicanas , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de von Willebrand/metabolismo
19.
Blood ; 109(6): 2565-70, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17110461

RESUMO

Angiogenesis is a complex, orchestrated process that plays a critical role in several conditions and has special relevance in the progression of cancer. Hypoxia is the major stimulus for angiogenesis, and hypoxia-inducible transcription factor-1 alpha (HIF-1alpha) is its key mediator. We set up a novel in vitro model of HIF-1alpha up-regulation by treating human umbilical vein endothelial cells (HUVECs) with the hypoxia-mimicking deferoxamine (DFO) and found that this condition was sufficient to promote angiogenesis, like the well-known HUVEC model cultured under low pO(2.) The proteasome inhibitor bortezomib, which induces strong apoptosis in cancer cells, abrogated proliferation and angiogenesis of HUVECs when used at a high concentration (100 nM), yet promoted both functions at a low dosage (10 nM). This double-edged effect appeared to be mediated by differential effects exerted by the different concentrations of bortezomib on 2 master regulators of tumor-associated angiogenesis, HIF-1alpha and nuclear factor kappa B (NF-kB). Significantly, when HUVECs were induced to express HIF-1alpha prior to bortezomib treatment, proliferative and angiogenic responses were abolished, and a greatly enhanced proapoptotic effect was promoted with both concentrations of the drug. These findings indicate that HIF-1alpha up-regulation may sensitize endothelial cells to the antiangiogenic and proapoptotic effects of bortezomib and might be exploited to target tumor-associated vessels in the course of antiangiogenic therapies.


Assuntos
Ácidos Borônicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Pirazinas/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib , Células Cultivadas , Células Endoteliais/citologia , Humanos , NF-kappa B/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Sensibilidade e Especificidade , Regulação para Cima
20.
BMC Nephrol ; 7: 5, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16536881

RESUMO

BACKGROUND: Chelation therapy with sodium edetate (EDTA) improved renal function and slowed the progression of renal insufficiency in patients subjected to lead intoxication. This study was performed to identify the underlying mechanism of the ability of EDTA treatment to protect kidneys from damage. METHODS: The effects of EDTA administration were studied in a rat model of acute renal failure induced by 60 minutes ischemia followed or not by 60 minutes reperfusion. Renal ischemic damage was evaluated by histological studies and by functional studies, namely serum creatinine and blood urea nitrogen levels. Treatment with EDTA was performed 30 minutes before the induction of ischemia. Polymorphonuclear cell (PMN) adhesion capability, plasmatic nitric oxide (NO) levels and endothelial NO synthase (eNOS) renal expression were studied as well as the EDTA protection from the TNFalpha-induced vascular leakage in the kidneys. Data was compared by two-way analysis of variance followed by a post hoc test. RESULTS: EDTA administration resulted in the preservation of both functional and histological parameters of rat kidneys. PMN obtained from peripheral blood of EDTA-treated ischemized rats, displayed a significant reduction in the expression of the adhesion molecule Mac-1 with respect to controls. NO was significantly increased by EDTA administration and eNOS expression was higher and more diffuse in kidneys of rats treated with EDTA than in the controls. Finally, EDTA administration was able to prevent in vivo the TNFalpha-induced vascular leakage in the kidneys. CONCLUSION: This data provides evidence that EDTA treatment is able to protect rat kidneys from ischemic damage possibly through the stimulation of NO production.


Assuntos
Quelantes/farmacologia , Ácido Edético/farmacologia , Isquemia/prevenção & controle , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/prevenção & controle , Animais , Nitrogênio da Ureia Sanguínea , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Adesão Celular/fisiologia , Quelantes/uso terapêutico , Creatinina/sangue , Modelos Animais de Doenças , Progressão da Doença , Ácido Edético/uso terapêutico , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Rim/química , Rim/patologia , Antígeno de Macrófago 1/análise , Masculino , Neutrófilos/química , Neutrófilos/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/análise , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA