Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Neuroscience ; 516: 113-124, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716914

RESUMO

Years before Alzheimer's disease (AD) is diagnosed, patients experience an impaired sense of smell, and ß-amyloid plaques accumulate within the olfactory mucosa and olfactory bulb (OB). The olfactory vector hypothesis proposes that external agents cause ß-amyloid to aggregate and spread from the OB to connected downstream brain regions. To reproduce the slow accumulation of ß-amyloid that occurs in human AD, we investigated the progressive accumulation of ß-amyloid across the brain using a conditional mouse model that overexpresses a humanized mutant form of the amyloid precursor protein (hAPP) in olfactory sensory neurons. Using design-based stereology, we show the progressive accumulation of ß-amyloid plaques within the OB and cortical olfactory regions with age. We also observe reduced OB volumes in these mice when hAPP expression begins prior-to but not post-weaning which we tracked using manganese-enhanced MRI. We therefore conclude that the reduced OB volume does not represent progressive degeneration but rather disrupted OB development. Overall, our data demonstrate that hAPP expression in the olfactory epithelium can lead to the accumulation and spread of ß-amyloid through the olfactory system into the hippocampus, consistent with an olfactory system role in the early stages of ß-amyloid-related AD progression.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Olfato/fisiologia , Placa Amiloide/patologia , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Bulbo Olfatório/metabolismo , Modelos Animais de Doenças
2.
Cell ; 185(21): 3896-3912.e22, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36167070

RESUMO

Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.


Assuntos
Axônios/metabolismo , Estresse do Retículo Endoplasmático , Receptores Odorantes , Animais , Camundongos , Bulbo Olfatório , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Fatores de Transcrição/metabolismo
3.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413085

RESUMO

Bilateral convergence of external stimuli is a common feature of vertebrate sensory systems. This convergence of inputs from the bilateral receptive fields allows higher order sensory perception, such as depth perception in the vertebrate visual system and stimulus localization in the auditory system. The functional role of such bilateral convergence in the olfactory system is unknown. To test whether each olfactory bulb (OB) contributes a separate piece of olfactory information, and whether information from the bilateral OB is integrated, we synchronized the activation of OBs with blue light in mice expressing ChIEF in the olfactory sensory neurons (OSNs) and behaviorally assessed the relevance of dual OBs in olfactory perception. Our findings suggest that each OB contributes separate components of olfactory information, and the mice integrate the bilaterally synchronized olfactory information for olfactory identity.


Assuntos
Percepção Olfatória , Neurônios Receptores Olfatórios , Animais , Luz , Camundongos , Bulbo Olfatório , Olfato
4.
PLoS One ; 16(6): e0252931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111206

RESUMO

The duration of a stimulus plays an important role in the coding of sensory information. The role of stimulus duration is extensively studied in the tactile, visual, and auditory system. In the olfactory system, temporal properties of the stimulus are key for obtaining information when an odor is released in the environment. However, how the stimulus duration influences the odor perception is not well understood. To test this, we activated the olfactory bulbs with blue light in mice expressing channelrhodopsin in the olfactory sensory neurons (OSNs) and assessed the relevance of stimulus duration on olfactory perception using foot shock associated active avoidance behavioral task on a "two-arms maze". Our behavior data demonstrate that the stimulus duration plays an important role in olfactory perception and the associated behavioral responses.


Assuntos
Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Estimulação Luminosa/métodos , Animais , Aprendizagem da Esquiva/fisiologia , Channelrhodopsins/metabolismo , Luz , Masculino , Camundongos , Fatores de Tempo
5.
Acta Neuropathol Commun ; 8(1): 109, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665027

RESUMO

Olfactory dysfunction is an early and prevalent symptom of Alzheimer's disease (AD) and the olfactory bulb is a nexus of beta-amyloid plaque and tau neurofibrillary tangle (NFT) pathology during early AD progression. To mitigate the accumulation of misfolded proteins, an endoplasmic reticulum stress response called the unfolded protein response (UPR) occurs in the AD hippocampus. However, chronic UPR activation can lead to apoptosis and the upregulation of beta-amyloid and tau production. Therefore, UPR activation in the olfactory system could be one of the first changes in AD. In this study, we investigated whether two proteins that signal UPR activation are expressed in the olfactory system of AD cases with low or high amounts of aggregate pathology. We used immunohistochemistry to label two markers of UPR activation (p-PERK and p-eIF2α) concomitantly with neuronal markers (NeuN and PGP9.5) and pathology markers (beta-amyloid and tau) in the olfactory bulb, piriform cortex, entorhinal cortex and the CA1 region of the hippocampus in AD and normal cases. We show that UPR activation, as indicated by p-PERK and p-eIF2α expression, is significantly increased throughout the olfactory system in AD cases with low (Braak stage III-IV) and high-level (Braak stage V-VI) pathology. We further show that UPR activation occurs in the mitral cells and in the anterior olfactory nucleus of the olfactory bulb where tau and amyloid pathology is abundant. However, UPR activation is not present in neurons when they contain NFTs and only rarely occurs in neurons containing diffuse tau aggregates. We conclude that UPR activation is prevalent in all regions of the olfactory system and support previous findings suggesting that UPR activation likely precedes NFT formation. Our data indicate that chronic UPR activation in the olfactory system might contribute to the olfactory dysfunction that occurs early in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Condutos Olfatórios/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fator de Iniciação 2 em Eucariotos/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Condutos Olfatórios/patologia , eIF-2 Quinase/análise , Proteínas tau/metabolismo
6.
Neuroimage ; 158: 232-241, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28669915

RESUMO

Neural progenitors or neuroblasts are produced by precursor cells in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) to the olfactory bulbs (OB) throughout life. In the OB, these adult born neurons either die or replace existing olfactory interneurons, playing a critical role in the stabilization of OB circuitry. Although several aspects of the addition of new neurons into the OB have been studied, it is unclear whether long-distance activity from the OB can regulate the influx of migrating neuroblasts along the RMS. In this study, iron oxide-assisted MRI was used to track the migration of neuroblasts in combination with reversible naris occlusion to manipulate odorant-induced activity. It was found that decreasing olfactory activity led to a decrease in the rate of neuroblast migration along the RMS. Removal of the naris occlusion led to an increase in migratory rate back to control levels, indicating that olfactory activity has regulatory function on neuroblast migration in the RMS. Blocking odorant activity also led to an arrest in OB growth and re-opening the block led to a rapid re-growth returning the bulb size to control levels. Furthermore, pharmacogenetic elimination of the neuroblasts demonstrated that they were required for re-growth of the bulb following sensory deprivation. Together, these results show that sensory activity, neural migration and OB growth are tightly coupled in an interdependent manner.


Assuntos
Movimento Celular/fisiologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Imageamento por Ressonância Magnética , Masculino , Odorantes , Ratos , Ratos Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 114(21): E4271-E4280, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484004

RESUMO

The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.


Assuntos
Células Ciliadas Auditivas/citologia , Células Ciliadas Vestibulares/citologia , MicroRNAs/genética , Mucosa Olfatória/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Transtornos da Audição/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Transtornos do Olfato/genética , Mucosa Olfatória/metabolismo , Equilíbrio Postural/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transtornos de Sensação/genética , Transtornos da Visão/genética
9.
eNeuro ; 3(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27517085

RESUMO

Accumulation of amyloid-ß (Aß) peptide in the brain is a central hallmark of Alzheimer's disease (AD) and is thought to be the cause of the observed neurodegeneration. Many animal models have been generated that overproduce Aß yet do not exhibit clear neuronal loss, questioning this Aß hypothesis. We previously developed an in vivo mouse model that expresses a humanized amyloid precursor protein (hAPP) in olfactory sensory neurons (OSNs) showing robust apoptosis and olfactory dysfunction by 3 weeks of age, which is consistent with early OSN loss and smell deficits, as observed in AD patients. Here we show, by deleting the ß-site APP cleaving enzyme 1 (BACE1) in two distinct transgenic mouse models, that hAPP-induced apoptosis of OSNs is Aß independent and remains cell autonomous. In addition, we reveal that the intrinsic apoptosis pathway is responsible for hAPP-induced OSN death, as marked by mitochondrial damage and caspase-9 activation. Given that hAPP expression causes OSN apoptosis despite the absence of BACE1, we propose that Aß is not the sole cause of hAPP-induced neurodegeneration and that the early loss of olfactory function in AD may be based on a cell-autonomous mechanism, which could mark an early phase of AD, prior to Aß accumulation. Thus, the olfactory system could serve as an important new platform to study the development of AD, providing unique insight for both early diagnosis and intervention.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Apoptose/fisiologia , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 9/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Transgênicos , Microscopia Eletrônica , Neurônios/patologia
10.
Cell Rep ; 16(4): 1115-1125, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27396335

RESUMO

Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs) in the main olfactory epithelium express the same odorant receptor (OR) in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these "MouSensors." In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction.


Assuntos
Bulbo Olfatório/fisiologia , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Animais , Animais Geneticamente Modificados/genética , Axônios/fisiologia , Sítios de Ligação/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Odorantes
11.
Front Cell Neurosci ; 10: 178, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471450

RESUMO

The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses.

12.
Nat Commun ; 7: 10729, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898529

RESUMO

Incorporation of new neurons enables plasticity and repair of circuits in the adult brain. Adult neurogenesis is a key feature of the mammalian olfactory system, with new olfactory sensory neurons (OSNs) wiring into highly organized olfactory bulb (OB) circuits throughout life. However, neither when new postnatally generated OSNs first form synapses nor whether OSNs retain the capacity for synaptogenesis once mature, is known. Therefore, how integration of adult-born OSNs may contribute to lifelong OB plasticity is unclear. Here, we use a combination of electron microscopy, optogenetic activation and in vivo time-lapse imaging to show that newly generated OSNs form highly dynamic synapses and are capable of eliciting robust stimulus-locked firing of neurons in the mouse OB. Furthermore, we demonstrate that mature OSN axons undergo continuous activity-dependent synaptic remodelling that persists into adulthood. OSN synaptogenesis, therefore, provides a sustained potential for OB plasticity and repair that is much faster than OSN replacement alone.


Assuntos
Plasticidade Neuronal , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Feminino , Masculino , Camundongos Transgênicos , Neurônios Receptores Olfatórios/ultraestrutura , Optogenética , Terminações Pré-Sinápticas/fisiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-26594154

RESUMO

The ability to label and manipulate specific cell types is central to understanding the structure and function of neuronal circuits. Here, we have developed a simple, affordable strategy for labeling of genetically defined populations of neurons throughout a targeted brain region: Bulk Regional Viral Injection (BReVI). Our strategy involves a large volume adeno-associated virus (AAV) injection in the targeted brain region of neonatal Cre driver mice. Using the mouse olfactory bulb (OB) as a model system, we tested the ability of BReVI to broadly and selectively label tufted cells, one of the two principal neuron populations of the OB, in CCK-IRES-Cre mice. BReVI resulted in labeling of neurons throughout the injected OB, with no spatial bias toward the injection site and no evidence of damage. The specificity of BReVI labeling was strikingly similar to that seen previously using immunohistochemical staining for cholecystokinin (CCK), an established tufted cell marker. Hence, the CCK-IRES-Cre line in combination with BReVI can provide an important tool for targeting and manipulation of OB tufted cells. We also found robust Cre-dependent reporter expression within three days of BReVI, which enabled us to assess developmental changes in the number and laminar distribution of OB tufted cells during the first three postnatal weeks. Furthermore, we demonstrate that BReVI permits structural and functional imaging in vivo, and can be combined with transgenic strategies to facilitate multi-color labeling of neuronal circuit components. BReVI is broadly applicable to different Cre driver lines and can be used to regionally manipulate genetically defined populations of neurons in any accessible brain region.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Técnicas Citológicas/métodos , Dependovirus , Neurônios/citologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/virologia , Contagem de Células , Colecistocinina/metabolismo , Dopamina/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Imuno-Histoquímica , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Microglia/virologia , Microscopia Confocal , Neurônios/virologia , Percepção Olfatória/fisiologia
14.
Neuroimage ; 118: 183-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26021215

RESUMO

Manganese enhanced MRI (MEMRI) was used to detect specific laminar changes in the olfactory bulb (OB) to follow the progression of amyloid precursor protein (APP)-induced neuronal pathology and its recovery in a reversible olfactory based Alzheimer's disease (AD) mouse model. Olfactory dysfunction is an early symptom of AD, which suggests that olfactory sensory neurons (OSNs) may be more sensitive to AD related factors than neurons in other brain areas. Previously a transgenic mouse model was established that causes degeneration of OSNs by overexpressing humanized APP (hAPP), which results in a disruption of the olfactory circuitry with changes in the glomerular structure. In the present work, OB volume and manganese enhancement of the glomerular layer in the OB were decreased in mutant mice. Turning off APP overexpression with doxycycline produced a significant increase in manganese enhancement of the glomerular layer after only 1week, and further recovery after 3weeks, while treatment with Aß antibody produced modest improvement with MRI measurements. Thus, MEMRI enables a direct tracking of laminar specific neurodegeneration through a non-invasive in vivo measurement. The use of MRI will enable assessment of the ability of different pharmacological reagents to block olfactory neuronal loss and can serve as a unique in vivo screening tool to both identify potential therapeutics and test their efficacy.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Bulbo Olfatório/patologia , Doença de Alzheimer/metabolismo , Animais , Meios de Contraste , Modelos Animais de Doenças , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Manganês , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bulbo Olfatório/metabolismo
15.
Neurology ; 84(15): 1559-67, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25788559

RESUMO

OBJECTIVE: To determine whether a structured and quantitative assessment of differential olfactory performance-recognized between a blast-injured traumatic brain injury (TBI) group and a demographically comparable blast-injured control group-can serve as a reliable antecedent marker for preclinical detection of intracranial neurotrauma. METHODS: We prospectively and consecutively enrolled 231 polytrauma inpatients, acutely injured from explosions during combat operations in either Afghanistan or Iraq and requiring immediate stateside evacuation and sequential admission to our tertiary care medical center over a 2½-year period. This study correlates olfactometric scores with both contemporaneous neuroimaging findings as well as the clinical diagnosis of TBI, tabulates population-specific incidence data, and investigates return of olfactory function. RESULTS: Olfactometric score predicted abnormal neuroimaging significantly better than chance alone (area under the curve = 0.78, 95% confidence interval [CI] 0.70-0.87). Normosmia was present in all troops with mild TBI (i.e., concussion) and all control subjects. Troops with radiographic evidence of frontal lobe injuries were 3 times more likely to have olfactory impairment than troops with injuries to other brain regions (relative risk 3.0, 95% CI 0.98-9.14). Normalization of scores occurred in all anosmic troops available for follow-up testing. CONCLUSION: Quantitative identification olfactometry has limited sensitivity but high specificity as a marker for detecting acute structural neuropathology from trauma. When considering whether to order advanced neuroimaging, a functional disturbance with central olfactory impairment should be regarded as an important tool to inform the decision process. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that central olfactory dysfunction identifies patients with TBI who have intracranial radiographic abnormalities with a sensitivity of 35% (95% CI 20.6%-51.7%) and specificity of 100% (95% CI 97.7%-100.0%).


Assuntos
Traumatismos por Explosões/diagnóstico , Lesões Encefálicas/diagnóstico , Lobo Frontal/lesões , Militares/estatística & dados numéricos , Transtornos do Olfato/diagnóstico , Olfatometria/normas , Adulto , Campanha Afegã de 2001- , Biomarcadores , Traumatismos por Explosões/complicações , Traumatismos por Explosões/epidemiologia , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Concussão Encefálica/epidemiologia , Lesões Encefálicas/complicações , Lesões Encefálicas/epidemiologia , Estudos de Coortes , Feminino , Humanos , Guerra do Iraque 2003-2011 , Masculino , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Sensibilidade e Especificidade , Estados Unidos/epidemiologia , Adulto Jovem
16.
J Neurosci ; 34(41): 13801-10, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297106

RESUMO

The circuitry of the olfactory bulb contains a precise anatomical map that links isofunctional regions within each olfactory bulb. This intrabulbar map forms perinatally and undergoes activity-dependent refinement during the first postnatal weeks. Although this map retains its plasticity throughout adulthood, its organization is remarkably stable despite the addition of millions of new neurons to this circuit. Here we show that the continuous supply of new neuroblasts from the subventricular zone is necessary for both the restoration and maintenance of this precise central circuit. Using pharmacogenetic methods to conditionally ablate adult neurogenesis in transgenic mice, we find that the influx of neuroblasts is required for recovery of intrabulbar map precision after disruption due to sensory block. We further demonstrate that eliminating adult-born interneurons in naive animals leads to an expansion of tufted cell axons that is identical to the changes caused by sensory block, thus revealing an essential role for new neurons in circuit maintenance under baseline conditions. These findings show, for the first time, that inhibiting adult neurogenesis alters the circuitry of projection neurons in brain regions that receive new interneurons and points to a critical role for adult-born neurons in stabilizing a brain circuit that exhibits high levels of plasticity.


Assuntos
Rede Nervosa/fisiologia , Neurogênese/fisiologia , Animais , Axônios/fisiologia , Proliferação de Células/fisiologia , Proteína Glial Fibrilar Ácida , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Nestina/genética , Nestina/fisiologia , Células-Tronco Neurais/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia
18.
J Neurotrauma ; 31(14): 1277-91, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24694002

RESUMO

Loss of olfactory function is an early indicator of traumatic brain injury (TBI). The regenerative capacity and well-defined neural maps of the mammalian olfactory system enable investigations into the degeneration and recovery of neural circuits after injury. Here, we introduce a unique olfactory-based model of TBI that reproduces many hallmarks associated with human brain trauma. We performed a unilateral penetrating impact to the mouse olfactory bulb and observed a significant loss of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) ipsilateral to the injury, but not contralateral. By comparison, we detected the injury markers p75(NTR), ß-APP, and activated caspase-3 in both the ipsi- and contralateral OE. In the olfactory bulb (OB), we observed a graded cell loss, with ipsilateral showing a greater reduction than contralateral and both significantly less than sham. Similar to OE, injury markers in the OB were primarily detected on the ipsilateral side, but also observed contralaterally. Behavioral experiments measured 4 days after impact also demonstrated loss of olfactory function, yet following a 30-day recovery period, we observed a significant improvement in olfactory function and partial recovery of olfactory circuitry, despite the persistence of TBI markers. Interestingly, by using the M71-IRES-tauLacZ reporter line to track OSN organization, we further determined that inducing neural activity during the recovery period with intense odor conditioning did not enhance the recovery process. Together, these data establish the mouse olfactory system as a new model to study TBI, serving as a platform to understand neural disruption and the potential for circuit restoration.


Assuntos
Lesões Encefálicas/patologia , Regeneração Nervosa/fisiologia , Bulbo Olfatório/lesões , Bulbo Olfatório/patologia , Animais , Modelos Animais de Doenças , Lateralidade Funcional , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Células Receptoras Sensoriais/patologia
19.
J Neurosci ; 33(30): 12208-17, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884929

RESUMO

Neural circuits maintain a precise organization that is vital for normal brain functions and behaviors, but become disrupted during neurological disease. Understanding the connection between wiring accuracy and function to measure disease progression or recovery has been difficult because of the complexity of behavioral circuits. The olfactory system maintains well-defined neural connections that regenerate throughout life. We previously established a reversible in vivo model of Alzheimer's disease by overexpressing a humanized mutated amyloid precursor protein (hAPP) in olfactory sensory neurons (OSNs). Using this model, we currently show that hAPP is present in the OSN axons of mutant mice, which exhibit strong caspase3 signal and reduced synaptic protein expression by 3 weeks of age. In the olfactory bulb, we show that glomerular structure is distorted and OSN axonal convergence is lost. In vivo functional imaging experiments further demonstrate disruption of the glomerular circuitry, and behavioral assays reveal that olfactory function is significantly impaired. Because OSNs regenerate, we also tested if the system could recover from hAPP-induced disruption. We found that after 1 or 3 weeks of shutting-off hAPP expression, the glomerular circuit was partially restored both anatomically and functionally, with behavioral deficits similarly reversed. Interestingly, the degree of functional recovery tracked directly with circuit restoration. Together, these data demonstrate that hAPP-induced circuit disruption and subsequent recovery can occur rapidly and that behavior can provide a measure of circuit organization. Thus, olfaction may serve as a useful biomarker to both follow disease progression and gauge potential recovery.


Assuntos
Agnosia/fisiopatologia , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Comportamento Alimentar/fisiologia , Recuperação de Função Fisiológica/fisiologia , Olfato/fisiologia , Agnosia/genética , Agnosia/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Axônios/patologia , Axônios/fisiologia , Caspase 3/metabolismo , Contagem de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Alimentos , Terapia Genética/métodos , Humanos , Óperon Lac , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Odorantes , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiologia , Olfato/genética
20.
J Neurosci ; 32(48): 17306-20, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23197722

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are prominently expressed in the olfactory epithelium (OE) and olfactory bulb (OB), but their importance for olfactory system development is completely unknown. We have investigated the consequences of GFRα1 deficiency for mouse olfactory system development and function. In the OE, GFRα1 was expressed in basal precursors, immature olfactory sensory neurons (OSNs), and olfactory ensheathing cells (OECs), but was excluded from mature OSNs. The OE of newborn Gfra1 knock-out mice was thinner and contained fewer OSNs, but more dividing precursors, suggesting deficient neurogenesis. Immature OSN axon bundles were enlarged and associated OECs increased, indicating impaired migration of OECs and OSN axons. In the OB, GFRα1 was expressed in immature OSN axons and OECs of the nerve layer, as well as mitral and tufted cells, but was excluded from GABAergic interneurons. In newborn knock-outs, the nerve layer was dramatically reduced, exhibiting fewer axons and OECs. Bulbs were smaller and presented fewer and disorganized glomeruli and a significant reduction in mitral cells. Numbers of tyrosine hydroxylase-, calbindin-, and calretinin-expressing interneurons were also reduced in newborn mice lacking Gfra1. At birth, the OE and OB of Gdnf knock-out mice displayed comparable phenotypes. Similar deficits were also found in adult heterozygous Gfra1(+/-) mutants, which in addition displayed diminished responses in behavioral tests of olfactory function. We conclude that GFRα1 is critical for the development and function of the main olfactory system, contributing to the development and allocation of all major classes of neurons and glial cells.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neuroglia/metabolismo , Bulbo Olfatório/metabolismo , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Axônios/metabolismo , Comportamento Animal/fisiologia , Diferenciação Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Camundongos Knockout , Bulbo Olfatório/crescimento & desenvolvimento , Mucosa Olfatória/crescimento & desenvolvimento , Mucosa Olfatória/metabolismo , Condutos Olfatórios/crescimento & desenvolvimento , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/crescimento & desenvolvimento , Olfato/fisiologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA