Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Angew Chem Int Ed Engl ; 63(26): e202318844, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38785268

RESUMO

The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.

2.
Sci Rep ; 13(1): 14653, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670113

RESUMO

Advanced materials undergo a complex and lengthy process of maturation for scaling up and deployment, mainly due to the high cost of their precursors. Therefore, it is highly desirable to fabricate highly valuable advanced porous solid-state materials, with proven applicability, by sustainably combining organic and inorganic waste materials as precursors. This study successfully demonstrates the preparation of Cr-terephthalate Metal-Organic Frameworks (Cr-BDC MOFs) by combining metal salt and organic linker extracted from tannery effluent and waste plastic bottles. The waste from tanneries was used as the source of Cr(III), while terephthalic acid was obtained from the alkaline hydrolysis of plastic bottles. Appropriate extraction and assembly processes led to the functional Cr-BDC MOFs, MIL-101(Cr) and MIL-53(Cr). The prepared MOFs showed similar properties (surface area, hydrolytic and thermal stability, and water adsorption performance) to similar MOFs synthesized from pure commercial-grade precursors, as confirmed by N2 sorption, XRD, TGA, and water adsorption experiments. The advancements made in this study represent significant progress in overcoming the bottleneck of MOF production cost efficiency via applying sustainability principles and pave the way for easy scaling-up and maturation of MOF-based processes, for air dehumidification and water harvesting as a case study.

3.
Nat Mater ; 22(7): 888-894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169976

RESUMO

Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).


Assuntos
Gases , Estruturas Metalorgânicas , Peso Molecular , Polietilenoimina , Polímeros
4.
Angew Chem Int Ed Engl ; 62(16): e202218842, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36762967

RESUMO

Here, the fabrication of a defect-free membrane that is based on a zeolite-like metal-organic framework (ZMOF) with the underlying ana topology is reported. The unique ana-ZMOF structure provides high degree of pore connectivity, which is reflected by the fast transport of gases. Prominently, it offers an optimum pore-aperture size, affording notable sieving selectivity for butane/isobutane, and optimal pore energetics for reverse CO2 /H2 separation. This emphasize the potential for the application of pure MOF membranes, paving the way to more sustainability of energy resources.

5.
Inorg Chem ; 61(28): 10661-10666, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35771949

RESUMO

Edge-transitive nets are regarded as appropriate blueprints for the practice of reticular chemistry, and in particular, for the rational design and synthesis of functional metal-organic frameworks (MOFs). Among edge-transitive nets, type I edge-transitive nets have unique coordination figures, offering only one edge-transitive target for their associated expressed net-cBUs. Here, we report the reticulation of the binodal edge-transitive (6, 6)-c nia net in MOF chemistry, namely, the deliberate assembly of trinuclear aluminum clusters and 6-connected hexacarboxylate ligands into highly porous nia-MOFs. Further studies reveal that Al-nia-MOF-1 shows promising attributes as a storage media for oxygen (O2) at high-pressure adsorption studies.

7.
Nat Commun ; 11(1): 6099, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257662

RESUMO

Energy-efficient approaches to propylene/propane separation such as molecular sieving are of considerable importance for the petrochemical industry. The metal organic framework NbOFFIVE-1-Ni adsorbs propylene but not propane at room temperature and atmospheric pressure, whereas the isostructural SIFSIX-3-Ni does not exclude propane under the same conditions. The static dimensions of the pore openings of both materials are too small to admit either guest, signalling the importance of host dynamics for guest entrance to and transport through the channels. We use ab initio calculations together with crystallographic and adsorption data to show that the dynamics of the two framework-forming units, polyatomic anions and pyrazines, govern both diffusion and separation. The guest diffusion occurs by opening of the flexible window formed by four pyrazines. In NbOFFIVE-1-Ni, (NbOF5)2- anion reorientation locates propane away from the window, which enhances propylene/propane separation.

8.
J Am Chem Soc ; 142(31): 13391-13397, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32657126

RESUMO

Porous metal-organic frameworks (MOFs) capable of storing a relatively high amount of dry methane (CH4) in the adsorbed phase are largely explored; however, solid CH4 storage in confined pores of MOFs in the form of hydrates is yet to be discovered. Here we report a rational approach to form CH4 hydrates by taking advantage of the optimal pore confinement in relatively narrow cavities of hydrolytically stable MOFs. Unprecedentedly, we were able to isolate methane hydrate (MH) nanocrystals with an sI structure encapsulated inside MOF pores with an optimal cavity dimension. It was found that confined nanocrystals require cavities slightly larger than the unit cell crystal size of MHs (1.2 nm), as exemplified in the experimental case study performed on Cr-soc-MOF-1 vs smaller cavities of Y-shp-MOF-5. Under these conditions, the excess amount of methane stored in the pores of Cr-soc-MOF-1 in the form of MH was found to be ≈50% larger than the corresponding dry adsorbed amount at 10 MPa. More importantly, the pressure gradient driving the CH4 storage/delivery process could be drastically reduced compared to the conventional CH4-adsorbed phase storage on the dry Cr-soc-MOF-1 (≤3 MPa vs 10 MPa).

9.
Chem Commun (Camb) ; 56(12): 1883-1886, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951225

RESUMO

In this work, a pre-designed Zr-based-MOF encompassing an organic linker with a redox active core is synthesized and its structure-property relationship as a supercapacitor electrode is investigated. An enhanced performance is revealed by the combination of this MOF's high porosity and redox core incorporation, which alters its double-layer and pseudocapacitance, respectively. An increase in the capacitance performance by a factor of two is achieved via post-synthetic structure rigidification using organic pillars.

10.
Chem Commun (Camb) ; 55(88): 13251-13254, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31621701

RESUMO

Water adsorption/desorption isotherms of Cr-soc-MOF-1 were monitored electrically, with the translation of proton conductivity measurements to physisorption isotherms in terms of S-shape and hysteresis features revealed by volumetry. Molecular modelling further established the relationship between the evolutive water-hydrogen bonded network and the "electrical" isotherm for this water-mediated proton conducting MOF.

11.
Nat Chem ; 11(7): 622-628, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31086300

RESUMO

Defect engineering of metal-organic frameworks (MOFs) offers promising opportunities for tailoring their properties to specific functions and applications. However, determining the structures of defects in MOFs-either point defects or extended ones-has proved challenging owing to the difficulty of directly probing local structures in these typically fragile crystals. Here we report the real-space observation, with sub-unit-cell resolution, of structural defects in the catalytic MOF UiO-66 using a combination of low-dose transmission electron microscopy and electron crystallography. Ordered 'missing linker' and 'missing cluster' defects were found to coexist. The missing-linker defects, reconstructed three-dimensionally with high precision, were attributed to terminating formate groups. The crystallization of the MOF was found to undergo an Ostwald ripening process, during which the defects also evolve: on prolonged crystallization, only the missing-linker defects remained. These observations were rationalized through density functional theory calculations. Finally, the missing-cluster defects were shown to be more catalytically active than their missing-linker counterparts for the isomerization of glucose to fructose.

12.
Adv Mater ; 31(14): e1807513, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30768815

RESUMO

Membrane-based separation is poised to reduce the operation cost of propylene/propane separation; however, identifying a suitable molecular sieve for membrane development is still an ongoing challenge. Here, the successful identification and use of a metal-organic framework (MOF) material as fillers, namely, the Zr-fum-fcu-MOF possessing an optimal contracted triangular pore-aperture driving the efficient diffusive separation of propylene from propane in mixed-matrix membranes are reported. It is demonstrated that the fabricated hybrid membranes display a high propylene/propane separation performance, far beyond the current trade-off limit of polymer membranes with excellent properties under industrial conditions. Most importantly, the mechanism behind the exceptional high propylene/propane selectivity is delineated by exploring theoretically the efficiency of sieving of different conformers of propane through the hypothesized triangular rigid pore-aperture of Zr-fum-fcu-MOF.

13.
J Am Chem Soc ; 141(5): 1847-1851, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30609360

RESUMO

Self-assembly allows structures to organize themselves into regular patterns by using local forces to find the lowest-energy configuration. However, assembling organic and inorganic building blocks in an ordered framework remains challenging due to  difficulties in rationally interfacing two dissimilar materials. Herein, the ensemble of polyoxometalates (POMs) and cyclodextrins (CDs) as molecular building blocks (MBBs) has yielded two unprecedented POM-CD-MOFs, namely [PW12O40]3- and α-CD MOF (POT-CD) as well as [P10Pd15.5O50]19- and γ-CD MOF (POP-CD), with distinct properties not shared by their isolated parent MBBs. Markedly, the POT-CD features a nontraditional enhanced Li storage behavior by virtue of a unique "amorphization and pulverization" process. This opens the door to a new generation of hybrid materials with tuned structures and customized functionalities.

14.
Nat Mater ; 18(1): 90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30459393

RESUMO

In the version of this Article originally published, the units of the y axis of Fig. 3b were incorrectly given as '106 cm2 s-1'; they should have been '10-8 cm2 s-1'. This has been corrected in the online versions of the Article.

15.
ACS Appl Mater Interfaces ; 11(1): 1706-1712, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525415

RESUMO

Conventional materials for gas/vapor sensing are limited to a single probe detection ability for specific analytes. However, materials capable of concurrent detection of two different probes in their respective harmful levels and using two types of sensing modes have yet to be explored. In particular, the concurrent detection of uncomfortable humidity levels and CO2 concentration (400-5000 ppm) in confined spaces is of extreme importance in a great variety of fields, such as submarine technology, aerospace, mining, and rescue operations. Herein, we report the deliberate construction and performance assessment of extremely sensitive sensors using an interdigitated electrode (IDE)-based capacitor and a quartz crystal microbalance (QCM) as transducing substrates. The unveiled sensors are able to simultaneously detect CO2 within the 400-5000 ppm range and relative humidity levels below 40 and above 60%, using two fluorinated metal-organic frameworks, namely, NbOFFIVE-1-Ni and AlFFIVE-1-Ni, fabricated as a thin film. Their subtle difference in a structure-adsorption relationship for H2O and CO2 was analyzed to unveil the corresponding structure-sensing property relationships using both QCM- and IDE-based sensing modes.

16.
Langmuir ; 34(48): 14546-14551, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30403872

RESUMO

The discovery of appropriate synthetic reaction conditions for fabricating a stable zirconium-based molecular sieve (Zr-fum-fcu-MOF) with minimal defects and its utilization in the challenging separation of linear paraffins from branched paraffins is reported. The crystallinity and structural defects were modulated and adjusted at the molecular level by controlling the synthetic reaction conditions (i.e., amounts of modulators and ligands). The impact of molecular defects on the separation of n-butane from iso-butane was studied through the preparation, fine characterization, and performance evaluation of Zr-fum-fcu-MOFs with varying degrees of defects. Defect-rich Zr-fum-fcu-MOFs were found to have poor n-butane/iso-butane separation, mainly driven by thermodynamics, while Zr-fum-fcu-MOFs with fewer or minimal defects showed efficient separation, driven mainly by kinetics and full molecular exclusion mechanisms. The impact of intrinsic defects (i.e., missing organic or inorganic blocks) on the associated mechanisms involved in the separation of n-butane/iso-butane was evidenced through single-gas adsorption, mixed-gas column breakthrough experiments, and calorimetric studies. This investigation demonstrates, for the first time, the importance of controlling intrinsic defects to maintain the selective exclusion behavior of hydrocarbon isomers when using molecular sieves.

17.
Angew Chem Int Ed Engl ; 57(45): 14811-14816, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30230128

RESUMO

Membrane-based gas separations are energy efficient processes; however, major challenges remain to develop high-performance membranes enabling the replacement of conventional separation processes. Herein, a new fluorinated MOF-based mixed-matrix membrane is reported, which is formed by incorporating the MOF crystals into selected polymers via a facile mixed-matrix approach. By finely controlling the molecular transport in the channels through the MOF apertures tuned by metal pillars and at the MOF-polymer interfaces, the resulting fluorinated MOF-based membranes exhibit excellent molecular sieving properties. These materials significantly outperform state-of-the-art membranes for simultaneous removal of H2 S and CO2 from natural gas-a challenging and economically important application. The robust fluorinated MOFs (NbOFFIVE-1-Ni, AlFFIVE-1-Ni), pave a way to efficient membrane separation processes that require precise discrimination of closely sized molecules.

18.
J Am Chem Soc ; 140(41): 13156-13160, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30226772

RESUMO

A hydrolytically stable metal-organic framework (MOF) material, named KAUST-7', was derived from a structural phase change of KAUST-7 upon exposure to conditions akin to protonic conduction (363 K/95% relative humidity). KAUST 7' exhibited a superprotonic conductivity as evidenced by the impedance spectroscopic measurement revealing an exceptional conductivity up to 2.0 × 10-2 S cm-1 at 363 K and under 95% RH, a performance maintained over 7 days. Ab initio molecular dynamics simulations suggested that the water-mediated proton transport mechanism is governed by water assisted reorganization of the H-bond network involving the fluorine moieties in KAUST-7' and the guest water molecules. The notable level of performances combined with a very good hydrolytic stability positions KAUST-7' as a prospective proton-exchange membrane alternative to the commercial benchmark Nafion. Furthermore, the remarkable RH sensitivity of KAUST-7' conductivity, substantially higher than previously reported MOFs, offers great opportunities for deployment as a humidity sensor.

19.
Adv Sci (Weinh) ; 5(9): 1800982, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250815

RESUMO

Membrane-based separations offer great potential for more sustainable and economical natural gas upgrading. Systematic studies of CO2/CH4 separation over a wide range of temperatures from 65 °C (338 K) to as low as -40 °C (233 K) reveals a favorable separation mechanism toward CO2 by incorporating Y-fum-fcu-MOF as a filler in a 6FDA-DAM polyimide membrane. Notably, the decrease of the temperature from 308 K down to 233 K affords an extremely high CO2/CH4 selectivity (≈130) for the hybrid Y-fum-fcu-MOF/6FDA-DAM membrane, about four-fold enhancement, with an associated CO2 permeability above 1000 barrers. At subambient temperatures, the pronounced CO2/CH4 diffusion selectivity dominates the high permeation selectivity, and the enhanced CO2 solubility promotes high CO2 permeability. The differences in adsorption enthalpy and activation enthalpy for diffusion between CO2 and CH4 produce the observed favorable CO2 permeation versus CH4. Insights into opportunities for using mixed-matrix membrane-based natural gas separations at extreme conditions are provided.

20.
Chem Commun (Camb) ; 54(68): 9414-9417, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30090900

RESUMO

Separation of paraffin isomers is of great importance in the refining industry because of their potential applications for energy efficiency, as reflected by their associated Research Octane Number (RON) values. Here, we report the synthesis of the first zeolite-like metal-organic framework (ZMOF) with ana topology that displays helicoidally/cylindrically-shaped channels with a pore-aperture size of ca. 3.8 × 6.2 Å. Markedly, such structural features offer potential for the selective separation of linear, and mono- and dibranched paraffins. Largely due to its tuned pore size and the presence of ions in the channels, ana-ZMOF possesses an excellent uniform charge density that allows the kinetic separation of n-pentane versus iso-pentane and n-butane vs. iso-butane, as well as the molecular exclusion of 2,2,4-trimethyl pentane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA