Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 189: 105290, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549826

RESUMO

In the last decades, the entomotoxicity of JBU and its derived peptides became an object of study, due mainly to the ubiquitous interaction of these compounds with different species of insects and their potential as natural insecticides. In this work, we investigated the neurotoxic effects of JBU in Nauphoeta cinerea cockroaches by dissecting pharmacologically the monoaminergic pathways involved. Selective pharmacological modulators for monoaminergic pathways in in vivo and ex vivo experimental models were employed. Thus, the analysis of N. cinerea neurolocomotory behavior demonstrated that JBU (1.5 and 3 µg/g) induces a significant decrease in the exploratory activity. In these assays, pretreatment of animals with phentolamine, SCH23390 or reserpine, interfered significantly with the response of JBU. Using in vivo abductor metathoracic preparations JBU (1.5 µg/g) induced progressive neuromuscular blockade, in 120 min recordings. In this set of experiments, the previous treatment of the animals with phentolamine, SCH23390 or reserpine, completely inhibited JBU-induced neuromuscular blockade. The recordings of spontaneous compound neural action potentials in N. cinerea legs showed that JBU, only in the smallest dose, significantly decreased the number of potentials in 60 min recordings. When the animals were pretreated with phentolamine, SCH23390, or reserpine, but not with mianserin, there was a significant prevention of the JBU-inhibitory responses on the action potentials firing. Meanwhile, the treatment of the animals with mianserin did not affect JBU's inhibitory activity. The data presented in this work strongly suggest that the neurotoxic response of JBU in N. cinerea involves a cross talking between OCTOPAMIN-ergic and DOPAMIN-ergic nerve systems, but not the SEROTONIN-ergic neurotransmission. Further molecular biology studies with expression of insect receptors associated with voltage clamp techniques will help to discriminate the selectivity of JBU over the monoaminergic transmission.


Assuntos
Baratas , Urease , Animais , Urease/farmacologia , Fentolamina/farmacologia , Mianserina/farmacologia , Reserpina/farmacologia
2.
Pestic Biochem Physiol ; 169: 104651, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828369

RESUMO

The entomotoxic potential of Manilkara rufula crude extract (CEMR) and its aqueous (AFMR) and methanolic (MFMR) fractions were evaluated against Nauphoeta cinerea cockroaches. The results point out to a direct modulation of octopaminergic and cholinergic pathways in insect nervous system. CEMR induced an anti-acetylcholinesterase (AChE) effect in cockroach brain homogenates. CEMR significantly decreased the cockroach heart rate in semi-isolated heart preparations. CEMR also caused a broad disturbance in the insect behavior by reducing the exploratory activity. The decreased antennae and leg grooming activities, by different doses of CEMR, mimicked those of phentolamine activity, a selective octopaminergic receptor antagonist. The lethargy induced by CEMR was accompanied by neuromuscular failure and by a decrease of sensilla spontaneous neural compound action potentials (SNCAP) firing in in vivo and ex vivo cockroach muscle-nerve preparations, respectively. AFMR was more effective in promoting neuromuscular paralysis than its methanolic counterpart, in the same dose. These data validate the entomotoxic activity of M. rufula. The phentolamine-like modulation induced in cockroaches is the result of a potential direct inhibition of octopaminergic receptors, combined to an anti-AChE activity. In addition, the modulation of CEMR on octopaminergic and cholinergic pathways is probably the result of a synergism between AFMR and MFMR chemical compounds. Further phytochemical investigation followed by a bio-guiding protocol will improve the molecular aspects of M. rufula pharmacology and toxicology to insects.


Assuntos
Baratas , Manilkara , Acetilcolinesterase , Animais , Colinérgicos , Árvores
3.
Ecotoxicol Environ Saf ; 171: 138-145, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30599431

RESUMO

The detection of cyanotoxins, such as the anatoxin-a(s), is essential to ensure the biological safety of water environments. Here, we propose the use of Nauphoeta cinerea cockroaches as an alternative biological model for the biomonitoring of the activity of anatoxin-a(s) in aquatic systems. In order to validate our proposed model, we compared the effects of a cyanobacterial extract containing anatoxin-a(s) (CECA) with those of the organophosphate trichlorfon (Tn) on biochemical and physiological parameters of the nervous system of Nauphoeta cinerea cockroaches. In brain homogenates from cockroaches, CECA (5 and 50 µg/g) inhibited acetylcholinesterase (AChE) activity by 53 ±â€¯2% and 51 ±â€¯7%, respectively, while Tn (5 and 50 µg/g) inhibited AChE activity by 35 ±â€¯4% and 80 ±â€¯9%, respectively (p < 0.05; n = 6). Moreover, CECA at concentrations of 5, 25, and 50 µg/g decreased the locomotor activity of the cockroaches, diminishing the distance travelled and increasing the frequency and duration of immobile episodes similarly to Tn (0.3 µg/g) (p < 0.05, n = 40, respectively). CECA (5, 25 and 50 µg/g) induced an increase in the leg grooming behavior, but not in the movement of antennae, similarly to the effect of Tn (0.3 µg/g). In addition, both CECA (50 µg/200 µl) and Tn (0.3 µg/200 µl) induced a negative chronotropism in the insect heart (37 ±â€¯1 and 47 ±â€¯8 beats/min in 30 min, respectively) (n = 9, p > 0.05). Finally, CECA (50 µg/g), Tn (0.3 µg/g) and neostigmine (50 µg/g) caused significant neuromuscular failure, as indicated by the monitoring of the in vivo neuromuscular function of the cockroaches, during 100 min (n = 6, p < 0.05, respectively). In conclusion, sublethal doses of CECA provoked entomotoxicity. The Tn-like effects of CECA on Nauphoeta cinerea cockroaches encompass both the central and peripheral nervous systems in our insect model. The inhibitory activity of CECA on AChE boosts a cascade of signaling events involving octopaminergic/dopaminergic neurotransmission. Therefore, this study indicates that this insect model could potentially be used as a powerful, practical, and inexpensive tool to understand the impacts of eutrophication and for orientating decontamination processes.


Assuntos
Inibidores da Colinesterase/toxicidade , Baratas/efeitos dos fármacos , Cianobactérias/química , Inseticidas/toxicidade , Neurotoxinas/toxicidade , Triclorfon/toxicidade , Tropanos/toxicidade , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Baratas/fisiologia , Toxinas de Cianobactérias , Feminino , Locomoção/efeitos dos fármacos , Masculino , Transmissão Sináptica/efeitos dos fármacos
4.
Pestic Biochem Physiol ; 148: 175-181, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891370

RESUMO

Rhinella icterica is a poisonous toad whose toxic secretion has never been studied against entomotoxic potential. Sublethal doses of Rhinella icterica toxic secretion (RITS) were assayed in Nauphoeta cinerea cockroaches, in order to understand the physiological and behavioral parameters, over the insect central and peripheral nervous system. RITS (10 µg/g) injections, induced behavioral impairment as evidenced by a significant decrease (38 ±â€¯14%) in the distance traveled (p < .05), followed by an increase (90 ±â€¯6%) of immobile episodes (p < .001, n = 28, respectively). In cockroaches semi-isolated heart preparations, RITS (16 µg/200 µl) induced a significant irreversible dose-dependent negative chronotropism, reaching ~40% decrease in heart rate in 20 min incubation. In in vivo cockroach neuromuscular preparations, RITS (20, 50 and 100 µg/g of animal weight) induced a time-dependent inhibition of twitch tension that was complete for 20 µg/g, in 120 min recordings. RITS (10 µg/g) also induced a significant increase in the insect leg grooming activity (128 ±â€¯10%, n = 29, p < .01), but not in the antennae counterparts. The RITS increase in leg grooming activity was prevented in 90% by the pretreatment of cockroaches with phentolamine (0.1 µg/g). The electrophysiological recordings of spontaneous neural compound action potentials showed that RITS (20 µg/g) induced a significant increase in the number of events, as well as in the rise time and duration of the potentials. In conclusion, RITS showed to be entomotoxic, being the neuromuscular failure and cardiotoxic activity considered the main deleterious effects. The disturbance of the cockroaches' behavior together with the electrophysiological alterations, may unveil the presence of some toxic components present in the poison with inherent biotechnological potentials.


Assuntos
Bufonidae/fisiologia , Baratas/efeitos dos fármacos , Octopamina/farmacologia , Pele/metabolismo , Toxinas Biológicas/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Baratas/metabolismo , Relação Dose-Resposta a Droga , Asseio Animal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Junção Neuromuscular/efeitos dos fármacos , Octopamina/metabolismo , Fentolamina/farmacologia , Toxinas Biológicas/metabolismo
5.
Neuropeptides ; 67: 1-8, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29157865

RESUMO

Peptide YY (PYY) belongs to the neuropeptide Y (NPY) family, which also includes the pancreatic polypeptide (PP) and NPY. PYY is secreted by the intestinal L cells, being present in the blood stream in two active forms capable of crossing the blood brain barrier, PYY (1-36) and its cleavage product, PYY (3-36). PYY is a selective agonist for the Y2 receptor (Y2R) and these receptors are abundant in the hippocampus. Here we investigated the mechanisms by which PYY (3-36) regulates intracellular Ca2+ concentrations ([Ca2+]i) in hippocampal neurons by employing a calcium imaging technique in hippocampal cultures. Alterations in [Ca2+]i were detected by changes in the Fluo-4 AM reagent emission. PYY (3-36) significantly increased [Ca2+] from the concentration of 10-11M as compared to the controls (infusion of HEPES-buffered solution (HBS) solution alone). The PYY (3-36)-increase in [Ca2+]i remained unchanged even in Ca2+-free extracellular solutions. Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pump (SERCA pump) inhibition partially prevent the PYY (3-36)-increase of [Ca2+]i and inositol 1,4,5-triphosphate receptor (IP3R) inhibition also decreased the PYY (3-36)-increase of [Ca2+]i. Taken together, our data strongly suggest that PYY (3-36) mobilizes calcium from the neuronal endoplasmic reticulum (ER) stores towards the cytoplasm. Next, we showed that PYY (3-36) inhibited high K+-induced increases of [Ca2+]i, suggesting that PYY (3-36) could also act by activating G-protein coupled inwardly rectifying potassium K+ channels. Finally, the co-infusion of the Y2 receptor (Y2R) antagonist BIIE0246 with PYY (3-36) abolished the [Ca2+]i increase induced by the peptide, suggesting that PYY (3-36)-induced [Ca2+]i increase in hippocampal neurons occurs via Y2Rs.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Benzazepinas/farmacologia , Citoplasma/metabolismo , Feminino , Masculino , Neuropeptídeo Y/metabolismo , Polipeptídeo Pancreático/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeo Y/metabolismo
6.
Toxicon ; 46(7): 736-50, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16198388

RESUMO

We have isolated a new phospholipase A2 (MiDCA1) from the venom of the coral snake Micrurus dumerilii carinicauda. This toxin, which had a molecular mass of 15,552Da, shared high sequence homology with the PLA2 toxins MICNI A and B from Micrurus nigrocinctus venom (77.7% and 73.1%, respectively). In chick biventer cervicis preparations, MiDCA1 produced concentration- and time-dependent neuromuscular blockade that reached 100% after 120 min (2.4 microM, n = 6); contractures to exogenously applied carbachol (8 microM) and KCl (13 mM) were still seen after complete blockade. In mouse phrenic-nerve diaphragm preparations, MiDCA1 (2.4 microM; n = 6) caused triphasic changes followed by partial neuromuscular blockade. Intracellular recordings of end-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) from mouse diaphragm preparations showed that MiDCA1 increased the quantal content by 386+/-12% after 10 min (n = 14; p<0.05) and caused a triphasic change in the frequency of MEPPs. MiDCA1 also decreased the resting membrane potential, an effect that was prevented by tetrodotoxin and/or low extracellular calcium, but not by d-tubocurarine. The toxin increased the amplitude of mouse sciatic-nerve compound action potentials by 30+/-9% (0.6 microM; p<0.05). Potassium currents elicited in freshly dissociated dorsal root ganglia neurones were blocked by 31+/-1% (n = 4; p<0.05) in the presence of 2.4 microM MiDCA1. These results show that MiDCA1 is a new presynaptic phospholipase A2 that produces neuromuscular blockade in vertebrate nerve-muscle preparations. The triphasic effects seen in mammalian preparations and the facilitatory response were probably caused mainly by the activation of sodium channels, complemented by the blockade of nerve terminal potassium channels. The inability of d-turocurarine to prevent the depolarization by MiDCA1 indicated that cholinergic nicotinic receptors were not involved in this phenomenon.


Assuntos
Venenos Elapídicos/enzimologia , Elapidae , Fosfolipases A/química , Fosfolipases A/farmacologia , Sequência de Aminoácidos , Animais , Galinhas , Diafragma/inervação , Venenos Elapídicos/farmacologia , Masculino , Camundongos , Dados de Sequência Molecular , Fosfolipases A/toxicidade , Fosfolipases A2 , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/fisiologia , Homologia de Sequência de Aminoácidos
7.
Basic Clin Pharmacol Toxicol ; 95(4): 175-82, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15504153

RESUMO

Bothropstoxin-I from Bothrops jararacussu snake venom is a lysine-49 phospholipase A(2) with myotoxic and neurotoxic activities. In this study, we used mouse phrenic nerve-diaphragm preparations in the absence and presence of manganese (Mn(2+)), a presynaptic blocker, to investigate a possible presynaptic action of bothropstoxin-I. At concentrations of 0.9 mM and 1.8 mM, Mn(2+) produced 50% neuromuscular blockade in less than 4 min., which was spontaneously reversible at the lower concentration. Bothropstoxin-I (1.4 microM) irreversibly inhibited neuromuscular blockade by 50% in 31+/-4 min. (mean+/-S.E.M., n = 9). Pretreating preparations with 0.9 mM Mn(2+) prevented the blockade by bothropstoxin-I. When added after bothropstoxin-I, Mn(2+) produced its characteristic blockade and, after washing, the twitch tension returned to pre-Mn(2+) levels, indicating that bothropstoxin-I caused irreversible damage before the addition of Mn(2+). Electrophysiological measurements showed that a concentration of bothropstoxin-I (0.35 microM), which did not produce neuromuscular blockade, caused the appearance of giant miniature end-plate potentials with no change in the membrane resting potential but increased the quantal content. Preparations preincubated with Mn(2+) (0.9 mM, 30 min.) were protected against the depolarizing action of bothropstoxin-I (0.7 microM). These results show that, in addition to its well-known myotoxic effect, bothropstoxin-I also has a presynaptic action.


Assuntos
Venenos de Crotalídeos/farmacologia , Bloqueadores Neuromusculares/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Animais , Bothrops , Diafragma/efeitos dos fármacos , Diafragma/inervação , Diafragma/fisiologia , Estimulação Elétrica , Técnicas In Vitro , Contração Isométrica , Masculino , Manganês/metabolismo , Potenciais da Membrana , Camundongos , Placa Motora/efeitos dos fármacos , Placa Motora/fisiologia , Bloqueio Neuromuscular , Junção Neuromuscular/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA