Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biologicals ; 86: 101758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518435

RESUMO

Fecal microbiota transplantation (FMT) has been demonstrated to be efficacious in preventing recurrent Clostridioides difficile (C. difficile) infections, and is being investigated for treatment of several other diseases including inflammatory bowel disease, cancer, obesity, liver disease, and diabetes. To speed up the translation of FMT into clinical practice as a safe and standardized therapeutic intervention, additional evidence-based technical and regulatory guidance is needed. To this end in May of 2022, the International Alliance for Biological Standardization (IABS) and the BIOASTER Microbiology Technology Institute hosted a second webinar to discuss key issues still impeding the advancement and standardization of FMT. The goal of this two-day webinar was to provide a forum for scientific experts to share and discuss data and key challenges with one another. Discussion included a focus on the evaluation of safety, efficacy, clinical trial design, reproducibility and accuracy in obtained microbiome measurements and data reporting, and the potential for standardization across these areas. It also focused on increasing the application potential and visibility of FMT beyond treating C. difficile infections.


Assuntos
Infecções por Clostridium , Transplante de Microbiota Fecal , Humanos , Transplante de Microbiota Fecal/normas , Transplante de Microbiota Fecal/métodos , Infecções por Clostridium/terapia , Infecções por Clostridium/microbiologia , Clostridioides difficile , Microbioma Gastrointestinal
2.
Microbiome ; 10(1): 24, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115054

RESUMO

BACKGROUND: There is a growing interest in using gut commensal bacteria as "next generation" probiotics. However, this approach is still hampered by the fact that there are few or no strains available for specific species that are difficult to cultivate. Our objective was to adapt flow cytometry and cell sorting to be able to detect, separate, isolate, and cultivate new strains of commensal species from fecal material. We focused on the extremely oxygen sensitive (EOS) species Faecalibacterium prausnitzii and the under-represented, health-associated keystone species Christensenella minuta as proof-of-concept. RESULTS: A BD Influx® cell sorter was equipped with a glovebox that covered the sorting area. This box was flushed with nitrogen to deplete oxygen in the enclosure. Anaerobic conditions were maintained during the whole process, resulting in only minor viability loss during sorting and culture of unstained F. prausnitzii strains ATCC 27766, ATCC 27768, and DSM 17677. We then generated polyclonal antibodies against target species by immunizing rabbits with heat-inactivated bacteria. Two polyclonal antibodies were directed against F. prausnitzii type strains that belong to different phylogroups, whereas one was directed against C. minuta strain DSM 22607. The specificity of the antibodies was demonstrated by sorting and sequencing the stained bacterial fractions from fecal material. In addition, staining solutions including LIVE/DEAD™ BacLight™ Bacterial Viability staining and polyclonal antibodies did not severely impact bacterial viability while allowing discrimination between groups of strains. Finally, we combined these staining strategies as well as additional criteria based on bacterial shape for C. minuta and were able to detect, isolate, and cultivate new F. prausnitzii and C. minuta strains from healthy volunteer's fecal samples. CONCLUSIONS: Targeted cell-sorting under anaerobic conditions is a promising tool for the study of fecal microbiota. It gives the opportunity to quickly analyze microbial populations, and can be used to sort EOS and/or under-represented strains of interest using specific antibodies, thus opening new avenues for culture experiments. Video abstract.


Assuntos
Microbioma Gastrointestinal , Anaerobiose , Animais , Bactérias/metabolismo , Faecalibacterium prausnitzii , Citometria de Fluxo , Coelhos
3.
Microbiol Resour Announc ; 11(1): e0113421, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35049352

RESUMO

We report the isolation, culture, and genome sequencing of isolate POC01, a strictly anaerobic bacterium isolated from a healthy donor, representing a previously uncultured member of the Oscillospiraceae family.

4.
Curr Top Microbiol Immunol ; 416: 1-26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30218158

RESUMO

Shigella and enteroinvasive Escherichia coli (EIEC) are gram-negative bacteria responsible for bacillary dysentery (shigellosis) in humans, which is characterized by invasion and inflammatory destruction of the human colonic epithelium. Different EIEC and Shigella subgroups rose independently from commensal E. coli through patho-adaptive evolution that included loss of functional genes interfering with the virulence and/or with the intracellular lifestyle of the bacteria, as well as acquisition of genetic elements harboring virulence genes. Among the latter is the large virulence plasmid encoding for a type three secretion system (T3SS), which enables translocation of virulence proteins (effectors) from the bacterium directly into the host cell cytoplasm. These effectors enable the pathogen to subvert epithelial cell functions, promoting its own uptake, replication in the host cytosol, and dissemination to adjacent cells while concomitantly inhibiting pro-inflammatory cell death. Furthermore, T3SS effectors are directly involved in Shigella manipulation of immune cells causing their dysfunction and promoting cell death. In the current chapter, we first describe the evolution of the enteroinvasive pathovars and then summarize the overall knowledge concerning the pathogenesis of these bacteria, with a particular focus on Shigella flexneri. Subversion of host cell functions in the human gut, both epithelial and immune cells, by different virulence factors is especially highlighted.


Assuntos
Disenteria Bacilar/microbiologia , Escherichia coli/patogenicidade , Shigella/patogenicidade , Escherichia coli/genética , Humanos , Plasmídeos/genética , Shigella/genética , Sistemas de Secreção Tipo III/genética , Virulência/genética
5.
mBio ; 9(1)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440574

RESUMO

Direct interactions between bacterial and host glycans have been recently reported to be involved in the binding of pathogenic bacteria to host cells. In the case of Shigella, the Gram-negative enteroinvasive bacterium responsible for acute rectocolitis, such interactions contribute to bacterial adherence to epithelial cells. However, the role of glycans in the tropism of Shigella for immune cells whose glycosylation pattern varies depending on their activation state is unknown. We previously reported that Shigella targets activated, but not nonactivated, human CD4+ T lymphocytes. Here, we show that nonactivated CD4+ T lymphocytes can be turned into Shigella-targetable cells upon loading of their plasma membrane with sialylated glycosphingolipids (also termed gangliosides). The Shigella targeting profile of ganglioside-loaded nonactivated T cells is similar to that of activated T cells, with a predominance of injection of effectors from the type III secretion system (T3SS) not resulting in cell invasion. We demonstrate that gangliosides interact with the O-antigen polysaccharide moiety of lipopolysaccharide (LPS), the major bacterial surface antigen, thus promoting Shigella binding to CD4+ T cells. This binding step is critical for the subsequent injection of T3SS effectors, a step which we univocally demonstrate to be dependent on actin polymerization. Altogether, these findings highlight the critical role of glycan-glycan interactions in Shigella pathogenesis.IMPORTANCE Glycosylation of host cell surface varies with species and location in the body, thus contributing to species specificity and tropism of microorganisms. Cross talk by Shigella, the Gram-negative enteroinvasive bacterium responsible for bacillary dysentery, with its exclusively human host has been extensively studied. However, the molecular determinants of the step of binding to host cells are poorly defined. Taking advantage of the observation that human-activated CD4+ T lymphocytes, but not nonactivated cells, are targets of Shigella, we succeeded in rendering the refractory cells susceptible to targeting upon loading of their plasma membrane with sialylated glycosphingolipids (gangliosides) that are abundantly present on activated cells. We show that interactions between the sugar polar part of gangliosides and the polysaccharide moiety of Shigella lipopolysaccharide (LPS) promote bacterial binding, which results in the injection of effectors via the type III secretion system. Whereas LPS interaction with gangliosides was proposed long ago and recently extended to a large variety of glycans, our findings reveal that such glycan-glycan interactions are critical for Shigella pathogenesis by driving selective interactions with host cells, including immune cells.


Assuntos
Aderência Bacteriana , Células Epiteliais/microbiologia , Polissacarídeos/metabolismo , Shigella/fisiologia , Tropismo Viral , Linfócitos T CD4-Positivos/microbiologia , Células Cultivadas , Gangliosídeos/metabolismo , Humanos , Lipopolissacarídeos/metabolismo
6.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084895

RESUMO

Salmonella targets and enters epithelial cells at permissive entry sites: some cells are more likely to be infected than others. However, the parameters that lead to host cell heterogeneity are not known. Here, we quantitatively characterized host cell vulnerability to Salmonella infection based on imaged parameters. We performed successive infections of the same host cell population followed by automated high-throughput microscopy and observed that infected cells have a higher probability of being reinfected. Establishing a predictive model, we identified two combined origins of host cell vulnerability: pathogen-induced cellular vulnerability emerging from Salmonella uptake and persisting at later stages of the infection and host cell-inherent vulnerability. We linked the host cell-inherent vulnerability with its morphological attributes, such as local cell crowding, and with host cell cholesterol content. This showed that the probability of Salmonella infection success can be forecast from morphological or molecular host cell parameters.


Assuntos
Salmonella typhimurium/fisiologia , Células CACO-2 , Sobrevivência Celular , Colesterol/metabolismo , Células HeLa , Humanos , Microscopia/métodos , Modelos Biológicos
7.
Proc Natl Acad Sci U S A ; 114(37): 9954-9959, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847968

RESUMO

The enteroinvasive bacterium Shigella is a facultative intracellular bacterium known, in vitro, to invade a large diversity of cells through the delivery of virulence effectors into the cell cytoplasm via a type III secretion system (T3SS). Here, we provide evidence that the injection of T3SS effectors does not necessarily result in cell invasion. Indeed, we demonstrate through optimization of a T3SS injection reporter that effector injection without subsequent cell invasion, termed the injection-only mechanism, is the main strategy used by Shigella to target human immune cells. We show that in vitro-activated human peripheral blood B, CD4+ T, and CD8+ T lymphocytes as well as switched memory B cells are mostly targeted by the injection-only mechanism. B and T lymphocytes residing in the human colonic lamina propria, encountered by Shigella upon its crossing of the mucosal barrier, are also mainly targeted by injection-only. These findings reveal that cells refractory to invasion can still be injected, thus extending the panel of host cells manipulated to the benefit of the pathogen. Future analysis of the functional consequences of the injection-only mechanism toward immune cells will contribute to the understanding of the priming of adaptive immunity, which is known to be altered during the course of natural Shigella infection.


Assuntos
Disenteria Bacilar/imunologia , Linfócitos/parasitologia , Shigella/metabolismo , Imunidade Adaptativa , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Movimento Celular/imunologia , Interações Hospedeiro-Patógeno , Humanos , Shigella/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Virulência , Fatores de Virulência/metabolismo
8.
J Exp Med ; 211(6): 1215-29, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24863068

RESUMO

Antibody-mediated immunity to Shigella, the causative agent of bacillary dysentery, requires several episodes of infection to get primed and is short-lasting, suggesting that the B cell response is functionally impaired. We show that upon ex vivo infection of human colonic tissue, invasive S. flexneri interacts with and occasionally invades B lymphocytes. The induction of a type three secretion apparatus (T3SA)-dependent B cell death is observed in the human CL-01 B cell line in vitro, as well as in mouse B lymphocytes in vivo. In addition to cell death occurring in Shigella-invaded CL-01 B lymphocytes, we provide evidence that the T3SA needle tip protein IpaD can induce cell death in noninvaded cells. IpaD binds to and induces B cell apoptosis via TLR2, a signaling receptor thus far considered to result in activation of B lymphocytes. The presence of bacterial co-signals is required to sensitize B cells to apoptosis and to up-regulate tlr2, thus enhancing IpaD binding. Apoptotic B lymphocytes in contact with Shigella-IpaD are detected in rectal biopsies of infected individuals. This study therefore adds direct B lymphocyte targeting to the diversity of mechanisms used by Shigella to dampen the host immune response.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Disenteria Bacilar/imunologia , Shigella flexneri/imunologia , Receptor 2 Toll-Like/imunologia , Adulto , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos B/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Células Cultivadas , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Disenteria Bacilar/metabolismo , Disenteria Bacilar/microbiologia , Feminino , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mutação , Células NIH 3T3 , Ligação Proteica/imunologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Shigella flexneri/genética , Shigella flexneri/fisiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
9.
Cell ; 156(1-2): 97-108, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439371

RESUMO

Successful infection depends on the ability of the pathogen to gain nutrients from the host. The extracellular pathogenic bacterium group A Streptococcus (GAS) causes a vast array of human diseases. By using the quorum-sensing sil system as a reporter, we found that, during adherence to host cells, GAS delivers streptolysin toxins, creating endoplasmic reticulum stress. This, in turn, increases asparagine (ASN) synthetase expression and the production of ASN. The released ASN is sensed by the bacteria, altering the expression of ∼17% of GAS genes of which about one-third are dependent on the two-component system TrxSR. The expression of the streptolysin toxins is strongly upregulated, whereas genes linked to proliferation are downregulated in ASN absence. Asparaginase, a widely used chemotherapeutic agent, arrests GAS growth in human blood and blocks GAS proliferation in a mouse model of human bacteremia. These results delineate a pathogenic pathway and propose a therapeutic strategy against GAS infections.


Assuntos
Percepção de Quorum , Infecções Estreptocócicas/microbiologia , Streptococcus/metabolismo , Animais , Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Bacteriemia/microbiologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Streptococcus/citologia , Streptococcus/patogenicidade , Transcrição Gênica , Fatores de Virulência/genética
10.
PLoS Pathog ; 5(11): e1000651, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19893632

RESUMO

Group A streptococcus (GAS) causes a wide variety of human diseases, and at the same time, GAS can also circulate without producing symptoms, similar to its close commensal relative, group G streptococcus (GGS). We previously identified, by transposon-tagged mutagenesis, the streptococcal invasion locus (sil). sil is a quorum-sensing regulated locus which is activated by the autoinducer peptide SilCR through the two-component system SilA-SilB. Here we characterize the DNA promoter region necessary for SilA-mediated activation. This site is composed of two direct repeats of 10 bp, separated by a spacer of 11 bp. Fusion of this site to gfp allowed us to systematically introduce single-base substitutions in the repeats region and to assess the relative contribution of various positions to promoter strength. We then developed an algorithm giving different weights to these positions, and performed a chromosome-wide bioinformatics search which was validated by transcriptome analysis. We identified 13 genes, mostly bacteriocin related, that are directly under the control of SilA. Having developed the ability to quantify SilCR signaling via GFP accumulation prompted us to search for GAS and GGS strains that sense and produce SilCR. While the majority of GAS strains lost sil, all GGS strains examined still possess the locus and approximately 63% are able to respond to exogenously added SilCR. By triggering the autoinduction circle using a minute concentration of synthetic SilCR, we identified GAS and GGS strains that are capable of sensing and naturally producing SilCR, and showed that SilCR can be sensed across these streptococci species. These findings suggest that sil may be involved in colonization and establishment of commensal host-bacterial relationships.


Assuntos
Loci Gênicos/genética , Regiões Promotoras Genéticas/genética , Percepção de Quorum/genética , Streptococcus pyogenes/genética , Sequência de Bases , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Loci Gênicos/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Streptococcus pyogenes/fisiologia
11.
Mol Microbiol ; 63(4): 1209-22, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17238919

RESUMO

In the last two decades an increasing number of local outbreaks of invasive group A streptococcus (GAS) infections including necrotizing fasciitis (NF) have been reported. We identified the streptococcal invasion locus (sil) which is essential for virulence of the M14 strain JS95 isolated from an NF patient. This locus contains six genes: silA/B and silD/E encoding two-component system (TCS) and ABC transporter, respectively, homologous to the corresponding entities in the regulon of Streptococcus pneumoniae involved in genetic competence. Situated between these two units are silC and silCR, which highly overlap and are transcribed from the complementing strand at opposite directions. SilCR is a putative competence stimulating peptide, but in the M14 strain it has a start codon mutation. Deletion of silC or addition of synthetic SilCR attenuates virulence of the M14 strain. Here we found that silC and silCR form a novel regulatory circuit that controls the sil locus transcription. Under non-inducing conditions silC represses the silCR promoter. Externally added SilCR peptide activates the TCS, which in turn stimulates silCR transcription. Ongoing silCR transcription mediates the repression of the converging and overlapping silC transcript. Transcription of bacteriocin-like peptide (blp) operon mirrors the inverse relationships between the silC and silCR transcripts. It is upregulated by either addition of SilCR or deletion of silC. Moreover, expression of silC from a plasmid in a silC deleted-mutant significantly represses blp transcription. Finally, we show that 18% of clinically relevant GAS isolates possess sil and produce SilCR. Based on these results we propose a working model for regulation gene expression and virulence in GAS by the SilCR signalling peptide.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Humanos , Regiões Promotoras Genéticas , Transdução de Sinais , Infecções Estreptocócicas/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Streptococcus pyogenes/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Virulência/genética
12.
EMBO J ; 25(19): 4628-37, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16977314

RESUMO

Group A Streptococcus (GAS) causes the life-threatening infection in humans known as necrotizing fasciitis (NF). Infected subcutaneous tissues from an NF patient and mice challenged with the same GAS strain possessed high bacterial loads but a striking paucity of infiltrating polymorphonuclear leukocytes (PMNs). Impaired PMN recruitment was attributed to degradation of the chemokine IL-8 by a GAS serine peptidase. Here, we use bioinformatics approach coupled with target mutagenesis to identify this peptidase as ScpC. We show that SilCR pheromone downregulates scpC transcription via the two-component system-SilA/B. In addition, we demonstrate that in vitro, ScpC degrades the CXC chemokines: IL-8 (human), KC, and MIP-2 (both murine). Furthermore, using a murine model of human NF, we demonstrate that ScpC, but not the C5a peptidase ScpA, is an essential virulence factor. An ScpC-deficient mutant is innocuous for untreated mice but lethal for PMN-depleted mice. ScpC degrades KC and MIP-2 locally in the infected skin tissues, inhibiting PMN recruitment. In conclusion, ScpC represents a novel GAS virulence factor functioning to directly inactivate a key element of the host innate immune response.


Assuntos
Adesinas Bacterianas/metabolismo , Quimiocinas CXC/metabolismo , Endopeptidases/metabolismo , Pele/microbiologia , Streptococcus pyogenes/enzimologia , Animais , Quimiocina CXCL2 , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Monocinas/metabolismo , Mutação/genética , Neutrófilos/microbiologia , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Pele/citologia , Pele/patologia , Streptococcus pyogenes/patogenicidade , Transcrição Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA