Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2309912, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898722

RESUMO

Tissue engineering is a steadily growing field of research due to its wide-ranging applicability in the field of regenerative medicine. Application-dependent mechanical properties of a scaffold material as well as its biocompatibility and tailored functionality represent particular challenges. Here the properties of fibrin-based hydrogels reinforced by functional cytocompatible poly(N-vinylcaprolactam)-based (PVCL) microgels are studied and evaluated. The employment of temperature-responsive microgels decorated by epoxy groups for covalent binding to the fibrin is studied as a function of cross-linking degree within the microgels, microgel concentration, as well as temperature. Rheology reveals a strong correlation between the mechanical properties of the reinforced fibrin-based hydrogels and the microgel rigidity and concentration. The incorporated microgels serve as cross-links, which enable temperature-responsive behavior of the hydrogels, and slow down the hydrogel degradation. Microgels can be additionally used as carriers for active drugs, as demonstrated for dexamethasone. The microgels' temperature-responsiveness allows for triggered release of payload, which is monitored using a bioassay. The cytocompatibility of the microgel-reinforced fibrin-based hydrogels is demonstrated by LIVE/DEAD staining experiments using human mesenchymal stem cells. The microgel-reinforced hydrogels are a promising material for tissue engineering, owing to their superior mechanical performance and stability, possibility of drug release, and retained biocompatibility.

2.
Microb Biotechnol ; 17(1): e14312, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435812

RESUMO

Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.


Assuntos
Produtos Biológicos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Prodigiosina/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia , Zeaxantinas/metabolismo
3.
Soft Matter ; 17(38): 8678-8692, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34518865

RESUMO

Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(N-vinylcaprolactam-co-1-vinyl-3-methylimidazolium) (poly(VCL-VIM+)) microgels carrying permanent positive charges and demonstrate that 1H high-resolution NMR spectroscopy in combination with transverse (T2) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core-corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM+) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM+ comonomer in the polymer network.


Assuntos
Microgéis , Escherichia coli
4.
Biomacromolecules ; 21(12): 5128-5138, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33206503

RESUMO

Microgels are an emerging class of "ideal" enzyme carriers because of their chemical and process stability, biocompatibility, and high enzyme loading capability. In this work, we synthesized a new type of permanently positively charged poly(N-vinylcaprolactam) (PVCL) microgel with 1-vinyl-3-methylimidazolium (quaternization of nitrogen by methylation of N-vinylimidazole moieties) as a comonomer (PVCL/VimQ) through precipitation polymerization. The PVCL/VimQ microgels were characterized with respect to their size, charge, swelling degree, and temperature responsiveness in aqueous solutions. P450 monooxygenases are usually challenging to immobilize, and often, high activity losses occur after the immobilization (in the case of P450 BM3 from Bacillus megaterium up to 100% loss of activity). The electrostatic immobilization of P450 BM3 in permanently positively charged PVCL/VimQ microgels was achieved without the loss of catalytic activity at the pH optimum of P450 BM3 (pH 8; ∼9.4 nmol 7-hydroxy-3-carboxy coumarin ethyl ester/min for free and immobilized P450 BM3); the resulting P450-microgel systems were termed P450 MicroGelzymes (P450 µ-Gelzymes). In addition, P450 µ-Gelzymes offer the possibility of reversible ionic strength-triggered release and re-entrapment of the biocatalyst in processes (e.g., for catalyst reuse). Finally, a characterization of the potential of P450 µ-Gelzymes to provide resistance against cosolvents (acetonitrile, dimethyl sulfoxide, and 2-propanol) was performed to evaluate the biocatalytic application potential.


Assuntos
Microgéis , Bacillus megaterium , Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução
5.
Macromol Rapid Commun ; 40(16): e1900144, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31162765

RESUMO

Herein, the synthesis of amylose-coated, temperature-responsive poly(N-vinylcaprolactam) (VCL)-based copolymer microgels by enzyme-catalyzed grafting-from polymerization with phosphorylase b from rabbit muscle is reported. The phosphorylase is able to recognize the oligosaccharide maltoheptaose as primer and attach glucose units from the monomer glucose-1-phosphate to it, thereby forming amylose chains while releasing inorganic phosphate. Therefore, to enable the phosphorylase-catalyzed grafting-from polymerization of glucose-1-phosphate from the PVCL-based microgels, the maltoheptaose primer is covalently attached to the microgel in the first synthesis step. This is realized by adding N-(2-aminoethyl)methacrylamide (AEMAA) as a comonomer to the PVCL microgel to integrate primary amino groups and subsequent coupling of maltoheptaonolactone. Both the PVCL/AEMAA microgel as well as the obtained microgel-maltoheptaose construct are characterized in detail by dynamic light scattering, electrophoretic mobility measurements, IR spectroscopy, and atomic force microscopy. From the microgel-maltoheptaose construct, the grafting-from polymerization of glucose-1-phosphate is performed by the addition of phosphorylase b. Atomic force microscopy images clearly demonstrate the formation of an amylose shell around the microgels. The developed amylose-coated microgels open up promising application possibilities, for example, as colloidal scavengers, since amylose helices can serve as host molecules for inclusion of hydrophobic guest molecules.


Assuntos
Amilose/metabolismo , Caprolactama/análogos & derivados , Microgéis/química , Fosforilases/metabolismo , Polímeros/síntese química , Amilose/química , Biocatálise , Caprolactama/síntese química , Caprolactama/química , Estrutura Molecular , Polimerização , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA