Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Viruses ; 15(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112946

RESUMO

Background: COVID-19 vaccination or natural infection is associated with the development of immunity. The search of IgA and IgG antibodies against all the structural proteins (spike, nucleocapsid, membrane, and envelope) of SARS-CoV-2 in breastfeeding mothers is associated with immunity that can help the newborn avoid development of the infection. Methods: In this study, we analyzed 30 breastfeeding women that provided samples of breast milk and serum and evaluated the presence of IgA, total IgG, and subclasses against the structural proteins of SARS-CoV-2. Results: We reported a high seroprevalence to IgA (76.67-100%) and negativity to IgG against all analyzed proteins in breast milk. Seroprevalence in serum samples was around 10-36.67% to IgA and 23.3-60% to IgG. Finally, we detected the presence of the subclasses IgG1, IgG2, and IgG4 against all the structural proteins of SARS-CoV-2. Conclusions: This work provides evidence of the presence of IgA and IgG antibodies against the four structural proteins of SARS-CoV-2 in breast milk and serum samples derived from breastfeeding women, which can confer immunity to the newborn.


Assuntos
COVID-19 , Leite Humano , Recém-Nascido , Feminino , Humanos , SARS-CoV-2 , Aleitamento Materno , Imunoglobulina G , Vacinas contra COVID-19 , Mães , Estudos Soroepidemiológicos , Imunoglobulina A , Anticorpos Antivirais
2.
Sci Rep ; 12(1): 15057, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064951

RESUMO

SARS-CoV-2 contains four structural proteins, two of which, the spike and nucleocapsid, are commonly used for the standardization of novel methods for antibody detection; however, some limitations in their use have been observed due to the homology of this virus with other phylogenetically-related viruses. We performed in silico analysis to search for novel immunogenic and antigenic peptides. A total of twenty-five peptides were preliminarily selected, located in the 3D structure of both proteins. Finally, eight peptides were selected: one located in the N protein and seven in the S1 domain of the spike protein. Additionally, the localization of selected peptides in 2D structures and possible changes in the sequences of these peptides in SARS-CoV-2 variants of concern were analyzed. All peptides were synthetized in MAP8 format, and recombinant S (trimer and RBD) and N proteins were used as antigens to search for antibodies in serum samples derived from COVID-19 patients, and for antibody response in New Zealand rabbits. Results showed high recognition of the serum derived from COVID-19 patients to all selected peptides; however, only the RBD3 peptide induced antibody production. In conclusion, this work provides evidence for a new strategy in peptide selection and its use for antibody detection or antibody production in animals.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/diagnóstico , Nucleocapsídeo , Peptídeos , Coelhos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
Vaccines (Basel) ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746517

RESUMO

The BNT162b2 Pfizer/BioNTech vaccine was the first emergency approved vaccine during the COVID-19 pandemic. The aim of this systematic review was to examine the variations in the humoral immune response induced by the administration of the BNT162b2 vaccine in patients with previous SARS-CoV-2 infection, the elderly, and those with comorbidities and immunosuppression states. Additionally, we analyzed the effect of generated neutralizing antibodies against the new variants of concern of SARS-CoV-2. Pubmed, Science Direct, Mendeley, and WorldWide Science were searched between 1 January 2020 and October 2021 using the keywords "BNT162b2", "serology", "comorbidity", "immunosuppression", and "variants of concern"dA total of 20 peer-reviewed publications were selected. The analysis showed that those individuals with previous infections have a considerably higher antibody response after the administration of BNT162b2 vaccine in contrast with seronegative individuals. With regard to variation in immune responses, elderly individuals, patients with cancer, or patients who had undergone a kidney transplant, dialysis, or who were pregnant had a lower antibody response in comparison to healthy individuals. Finally, antibodies developed against the S protein produced by the BNT162b2 vaccine, possessed lower neutralizing activity against the alpha, beta, gamma, and delta variants of SARS-CoV-2. In conclusion, patients with immunodeficiencies and comorbidities have a lesser antibody response, about which further studies need to be performed in order to analyze the effectiveness and duration of the humoral immunity associated with vaccination in these specific populations.

4.
Front Oncol ; 12: 887766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719952

RESUMO

Background: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent pediatric cancer worldwide. Despite improvements in treatment regimens, approximately 20% of the cases cannot be cured, highlighting the necessity for identifying new biomarkers to improve the current clinical and molecular risk stratification schemes. We aimed to investigate whether LINC00173 is a biomarker in ALL and to explore its expression level in other human cancer types. Methods: A nested case-control study including Mexican children with BCP-ALL was conducted. LINC00173 expression was evaluated by qRT-PCR using hydrolysis probes. To validate our findings, RNA-seq expression data from BCP-ALL and normal tissues were retrieved from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) repositories, respectively. LINC00173 expression was also evaluated in solid tumors by downloading available data from The Cancer Genome Atlas (TCGA). Results: A lower expression of LINC00173 in BCP-ALL cases compared to normal subjects was observed (p < 0.05). ALL patients who carry the TCF3/PBX1 fusion gene displayed lower expression of LINC00173 in contrast to other BCP-ALL molecular subtypes (p < 0.04). LINC00173 underexpression was associated with a high risk to relapse (HR = 1.946, 95% CI = 1.213-3.120) and die (HR = 2.073, 95% CI = 1.211-3.547). Patients with TCF3/PBX1 and underexpression of LINC00173 had the worst prognosis (DFS: HR = 12.24, 95% CI = 5.04-29.71; OS: HR = 11.19, 95% CI = 26-32). TCGA data analysis revealed that underexpression of LINC00173 is also associated with poor clinical outcomes in six new reported tumor types. Conclusion: Our findings suggest that LINC00173 is a biomarker of poor prognosis in BCP-ALL and other types of cancer. We observed an association between the expression of LINC00173 and TCF3/PBX1 and the risk to relapse and die in BCP-ALL, which is worse in TCF3/PBX1-positive cases displaying underexpression of LINC00173. Experimental studies are needed to provide insight into the LINC00173 and TCF3/PBX relationship.

5.
Viruses ; 14(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35632705

RESUMO

The E6 oncoprotein of HPV16 variants differentially alters the transcription of the genes involved in migration and non-coding RNAs such as lncRNAs. The role of the lncRNA MINCR in cervical cancer and its relationship with variants of oncogenic HPV remain unknown. Therefore, the objective of this study was to analyze the effect of the E6 oncoprotein of the AA-c variant of HPV16 in cell migration through the MINCR/miR-28-5p/RAP1B axis. To explore the functional role of MINCR in CC, we used an in vitro model of C33-A cells with exogenous expression of the E6 oncoprotein of the AA-c variant of HPV16. Interfering RNAs performed MINCR silencing, and the expression of miR-28-5p and RAP1B mRNA was analyzed by RT-qPCR. We found that C33-A/AA-c cells expressed MINCR 8-fold higher compared to the control cells. There is an inverse correlation between the expression of miR-28-5p and RAP1B in C33-A/AA-c cells. Our results suggest that MINCR might regulate the expression of RAP1B through the inhibition of miR-28-5p in CC cells expressing the E6 oncoprotein of HPV16 AA-c. We report, for the first time, that the MINCR/miR-28-5p/RAP1B axis positively regulates cell migration in CC-derived cells that express the E6 oncoprotein of the AA-c variant of HPV16.


Assuntos
MicroRNAs , Proteínas Oncogênicas Virais , RNA Longo não Codificante , Neoplasias do Colo do Útero , Proteínas rap de Ligação ao GTP , Linhagem Celular Tumoral , Movimento Celular , Feminino , Papillomavirus Humano 16 , Humanos , MicroRNAs/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , RNA Longo não Codificante/genética , Proteínas Repressoras , Neoplasias do Colo do Útero/genética , Proteínas rap de Ligação ao GTP/metabolismo
6.
Hematology ; 27(1): 476-487, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35413231

RESUMO

OBJECTIVE: The interplay between intrinsic and extrinsic elements involved in the physiology of hematopoietic cells is not completely understood. In the present study, we analyzed the transcriptional profiles of human cord blood-derived hematopoietic stem cells (HSCs), as well as myeloid (MPCs) and erythroid (EPCs) progenitors, and assessed their proliferation and expansion kinetics in vitro. METHODS: All cell populations were obtained by cell-sorting, and were cultured in liquid cultures supplemented with different cytokine combinations. Their gene expression profiles were determined by RNA microarrays right after cell-sorting, before culture. RESULTS: HSCs showed the highest proliferation and expansion capacities in culture, and were found to be more closely related, in transcriptional terms, to MPCs than to EPCs. This correlated with the fact that after 30 days, only cultures initiated with HSCs and MPCs were sustained. Expression of cell cycle and cell division-related genes was enriched in EPCs. Such cells showed significantly higher proliferation than MPCs, however, their expansion potential was reduced, so that cultures initiated with EPCs declined after 15 days and became exhausted by day 30. Proliferation and expansion of HSCs and EPCs were higher in the presence of a cytokine combination that favors erythropoiesis, whereas the growth of MPCs was higher under a cytokine combination that favors myelopoiesis. CONCLUSION: This study shows a correlation between the transcriptional profiles of HSCs, MPCs, and EPCs, and their respective in vitro growth under particular culture conditions. These results may be relevant in the development of ex vivo systems for the expansion of hematopoietic cells for clinical application.


Assuntos
Citocinas , Células-Tronco Hematopoéticas , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/genética , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Transcriptoma
7.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298896

RESUMO

Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.


Assuntos
Resistência à Insulina/genética , RNA Longo não Codificante/genética , Animais , Glucose/genética , Humanos , Insulina/genética , Metabolismo dos Lipídeos/genética , Transdução de Sinais/genética
8.
Expert Rev Mol Diagn ; 21(8): 809-821, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133256

RESUMO

Introduction: Cardiometabolic diseases are a global public health problem, with significant increases in their prevalence. Different epigenetic factors involved in the progression of metabolic alterations have been described, such as long non-coding RNAs (lncRNAs). H19 is a multifunctional lncRNA expressed from the maternal allele, with low expression after birth, except in the skeletal muscle and heart. Recent studies have linked its dysregulation to alterations in cell metabolism.Areas covered: H19 plays a role in the pathogenesis of coronary artery disease, nonalcoholic fatty liver disease, hepatic and renal fibrosis, insulin resistance, type 2 diabetes, and inflammation. H19 acts mainly as a competitive endogenous RNA of molecules involved in pathways that regulate cell metabolism. In this review, we analyzed the dysregulation of H19 in cardiometabolic diseases and its relationship with molecular alterations in different signaling pathways.Expert opinion: The association of H19 with the development of cardiometabolic diseases, indicates that H19 could be a therapeutic target and prognostic biomarker for these diseases. Controversies have been reported regarding the expression of H19 in some metabolic diseases, therefore, it is necessary to continue research to clarify its pathogenic effect in different organs.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/genética , Genes Supressores de Tumor , Humanos , Fígado/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Front Oncol ; 10: 572954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194675

RESUMO

Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.

10.
Sci Rep ; 10(1): 14145, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839509

RESUMO

Breast cancer (BRCA) is a serious public health problem, as it is the most frequent malignant tumor in women worldwide. BRCA is a molecularly heterogenic disease, particularly at gene expression (mRNAs) level. Recent evidence shows that coding RNAs represent only 34% of the total transcriptome in a human cell. The rest of the 66% of RNAs are non-coding, so we might be missing relevant biological, clinical or regulatory information. In this report, we identified nine novel tumor types from TCGA with FAM83H-AS1 deregulation. We used survival analysis to demonstrate that FAM83H-AS1 expression is a marker for poor survival in IHC-detected ER and PR positive BRCA patients and found a significant correlation between FAM83H-AS1 overexpression and tamoxifen resistance. Estrogen and Progesterone receptor expression levels interact with FAM83H-AS1 to potentiate its effect in OS prediction. FAM83H-AS1 silencing impairs two important breast cancer related pathways: cell migration and cell death. Among the most relevant potential FAM83H-AS1 gene targets, we found p63 and claudin 1 (CLDN1) to be deregulated after FAM83H-AS1 knockdown. Using correlation analysis, we show that FAM83H-AS1 can regulate a plethora of cancer-related genes across multiple tumor types, including BRCA. This evidence suggests that FAM83H-AS1 is a master regulator in different cancer types, and BRCA in particular.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Regulação Neoplásica da Expressão Gênica/genética , Proteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Movimento Celular/genética , Claudina-1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Proteínas/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Análise de Sobrevida , Tamoxifeno/uso terapêutico , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
11.
Sci Rep ; 10(1): 13146, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753692

RESUMO

Breast cancer is the most commonly diagnosed neoplasm in women worldwide with a well-recognized heterogeneous pathology, classified into four molecular subtypes: Luminal A, Luminal B, HER2-enriched and Basal-like, each one with different biological and clinical characteristics. Long non-coding RNAs (lncRNAs) represent 33% of the human transcriptome and play critical roles in breast carcinogenesis, but most of their functions are still unknown. Therefore, cancer research could benefit from continued exploration into the biology of lncRNAs in this neoplasm. We characterized lncRNA expression portraits in 74 breast tumors belonging to the four molecular subtypes using transcriptome microarrays. To infer the biological role of the deregulated lncRNAs in the molecular subtypes, we performed co-expression analysis of lncRNA-mRNA and gene ontology analysis. We identified 307 deregulated lncRNAs in tumor compared to normal tissue and 354 deregulated lncRNAs among the different molecular subtypes. Through co-expression analysis between lncRNAs and protein-coding genes, along with gene enrichment analysis, we inferred the potential function of the most deregulated lncRNAs in each molecular subtype, and independently validated our results taking advantage of TCGA data. Overexpression of the AC009283.1 was observed in the HER2-enriched subtype and it is localized in an amplification zone at chromosome 17q12, suggesting it to be a potential tumorigenic lncRNA. The functional role of lncRNA AC009283.1 was examined through loss of function assays in vitro and determining its impact on global gene expression. These studies revealed that AC009283.1 regulates genes involved in proliferation, cell cycle and apoptosis in a HER2 cellular model. We further confirmed these findings through ssGSEA and CEMITool analysis in an independent HER2-amplified breast cancer cohort. Our findings suggest a wide range of biological functions for lncRNAs in each breast cancer molecular subtype and provide a basis for their biological and functional study, as was conducted for AC009283.1, showing it to be a potential regulator of proliferation and apoptosis in the HER2-enriched subtype.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Proliferação de Células , Cromossomos Humanos Par 17 , RNA Longo não Codificante/biossíntese , Receptor ErbB-2/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/metabolismo , Feminino , Humanos , Células MCF-7 , RNA Longo não Codificante/genética , Receptor ErbB-2/genética
12.
Genes (Basel) ; 11(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183133

RESUMO

Evidence showing the role of long non-coding RNAs (lncRNAs) in leukemogenesis have emerged in the last decade. It has been proposed that these genes can be used as diagnosis and/or prognosis biomarkers in childhood acute lymphoblastic leukemia (ALL). To know if lncRNAs are associated with early relapse and early mortality, a microarray-based gene expression analysis in children with B-lineage ALL (B-ALL) was conducted. Cox regression analyses were performed. Hazard ratios (HR) and 95% confidence intervals (95% CI) were calculated. LINC00152 and LINC01013 were among the most differentially expressed genes in patients with early relapse and early mortality. For LINC00152 high expression, the risks of relapse and death were HR: 4.16 (95% CI: 1.46-11.86) and HR: 1.99 (95% CI: 0.66-6.02), respectively; for LINC01013 low expression, the risks of relapse and death were HR: 3.03 (95% CI: 1.14-8.05) and HR: 6.87 (95% CI: 1.50-31.48), respectively. These results were adjusted by NCI risk criteria and chemotherapy regimen. The lncRNA-mRNA co-expression analysis showed that LINC00152 potentially regulates genes involved in cell substrate adhesion and peptidyl-tyrosine autophosphorylation biological processes. The results of the present study point out that LINC00152 could be a potential biomarker of relapse in children with B-ALL.


Assuntos
Biomarcadores Tumorais/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Lactente , Masculino , Análise em Microsséries/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva
13.
Mol Oncol ; 13(4): 909-927, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30648789

RESUMO

Triple negative breast cancer (TNBC) represents an aggressive phenotype with poor prognosis compared with ER, PR, and HER2-positive tumors. TNBC is a heterogeneous disease, and gene expression analysis has identified seven molecular subtypes. Accumulating evidence demonstrates that long non-coding RNA (lncRNA) are involved in regulation of gene expression and cancer biology, contributing to essential cancer cell functions. In this study, we analyzed the expression profile of lncRNA in TNBC subtypes from 156 TNBC samples, and then characterized the functional role of LncKLHDC7B (ENSG00000226738). A total of 710 lncRNA were found to be differentially expressed between TNBC subtypes, and a subset of these altered lncRNA were independently validated. We discovered that LncKLHDC7B (ENSG00000226738) acts as a transcriptional modulator of its neighboring coding gene KLHDC7B in the immunomodulatory subtype. Furthermore, LncKLHDC7B knockdown enhanced migration and invasion, and promoted resistance to cellular death. Our findings confirmed the contribution of LncKLHDC7B to induction of apoptosis and inhibition of cell migration and invasion, suggesting that TNBC tumors with enrichment of LncKLHDC7B may exhibit distinct regulatory activity, or that this may be a generalized process in breast cancer. Additionally, in silico analysis confirmed for the first time that the low expression of KLHDC7B and LncKLHDC7B is associated with poor prognosis in patients with breast cancer.


Assuntos
Apoptose/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Imunomodulação , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Inativação Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Invasividade Neoplásica , Fenótipo , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima/genética
14.
Stem Cells Transl Med ; 7(8): 602-614, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29701016

RESUMO

To date, different experimental strategies have been developed for the ex vivo expansion of human hematopoietic stem (HSCs) and progenitor (HPCs) cells. This has resulted in significant advances on the use of such expanded cells in transplantation settings. To this day, however, it is still unclear to what extent those stem and progenitor cells generated in vitro retain the functional and genomic integrity of their freshly isolated counterparts. In trying to contribute to the solving of this issue, in the present study we have selected and purified three different hematopoietic cell populations: HSCs (CD34+ CD38- CD45RA- CD71- Lin- cells), myeloid progenitor cells (CD34+ CD38+ CD45RA+ CD71- Lin- cells), and erythroid progenitor cells (CD34+ CD38+ CD45RA- CD71+ Lin- cells), obtained directly from fresh human umbilical cord blood (UCB) units or generated in vitro under particular culture conditions. We, then, compared their functional integrity in vitro and their gene expression profiles. Our results indicate that in spite of being immunophenotipically similar, fresh and in vitro generated cells showed significant differences, both in functional and genetic terms. As compared to their fresh counterparts, those HSCs generated in our culture system showed a deficient content of long-term culture-initiating cells, and a marked differentiation bias toward the myeloid lineage. In addition, in vitro generated HSCs and HPCs showed a limited expansion potential. Such functional alterations correlated with differences in their gene expression profiles. These observations are relevant in terms of HSC biology and may have implications in UCB expansion and transplantation. Stem Cells Translational Medicine 2018;7:602-614.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Células-Tronco/citologia
15.
Virology ; 488: 187-95, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655236

RESUMO

We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants.


Assuntos
Células Epiteliais/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Polimorfismo Genético , Proteínas Repressoras/genética , Fusão Gênica Artificial , Linhagem Celular Tumoral , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas Virais/biossíntese , Proteínas Repressoras/biossíntese , Transcriptoma
16.
BMC Gastroenterol ; 14: 223, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539656

RESUMO

BACKGROUND: Helicobacter pylori chronic infection is associated with chronic gastritis, peptic ulcer, and gastric cancer. Cytotoxin-associated gene A (cagA)-positive H. pylori strains increase the risk of gastric pathology. The carcinogenic potential of CagA is linked to its polymorphic EPIYA motif variants. The goals of this study were to investigate the frequency of cagA-positive Helicobacter pylori in Mexican patients with gastric pathologies and to assess the association of cagA EPIYA motif patterns with peptic ulcer and gastric cancer. METHODS: A total of 499 patients were studied; of these, 402 had chronic gastritis, 77 had peptic ulcer, and 20 had gastric cancer. H. pylori DNA, cagA, and the EPIYA motifs were detected in total DNA from gastric biopsies by PCR. The type and number of EPIYA segments were determined by the electrophoretic patterns. To confirm the PCR results, 20 amplicons of the cagA 3' variable region were sequenced, and analyzed in silico, and the amino acid sequence was predicted with MEGA software, version 5. The odds ratio (OR) was calculated to determine the associations between the EPIYA motif type and gastric pathology and between the number of EPIYA-C segments and peptic ulcers and gastric cancer. RESULTS: H. pylori DNA was found in 287 (57.5%) of the 499 patients, and 214 (74%) of these patients were cagA-positive. The frequency of cagA-positive H. pylori was 74.6% (164/220) in chronic gastritis patients, 73.6% (39/53) in peptic ulcer patients, and 78.6% (11/14) in gastric cancer patients. The EPIYA-ABC pattern was more frequently observed in chronic gastritis patients (79.3%, 130/164), while the EPIYA-ABCC sequence was more frequently observed in peptic ulcer (64.1%, 25/39) and gastric cancer patients (54.5%, 6/11). However, the risks of peptic ulcer (OR = 7.0, 95% CI = 3.3-15.1; p < 0.001) and gastric cancer (OR = 5.9, 95% CI = 1.5-22.1) were significantly increased in individuals who harbored the EPIYA-ABCC cagA gene pattern. CONCLUSIONS: cagA-positive H. pylori is highly prevalent in southern Mexico, and all CagA variants were of the western type. The cagA alleles that code for EPIYA-ABCC motif patterns are associated with peptic ulcers and gastric cancer.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Motivos de Nucleotídeos , Úlcera Péptica/microbiologia , Neoplasias Gástricas/microbiologia , Doença Crônica , Feminino , Gastrite/genética , Gastrite/microbiologia , Infecções por Helicobacter/genética , Humanos , Masculino , Pessoa de Meia-Idade , Úlcera Péptica/genética , Análise de Sequência de Proteína , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA