Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Commun ; 15(1): 2765, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553455

RESUMO

Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Diferenciação Celular , Ciclo Celular/genética , Análise de Sequência de RNA/métodos
2.
Metabolites ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392976

RESUMO

The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of SLC13A5 variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.

3.
Immunol Cell Biol ; 102(3): 211-224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288547

RESUMO

CD4+ forkhead box P3 (FOXP3)+ regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs. MT-2 cells, an immortalized Treg-like cell line, offer a model to study Treg biology and their therapeutic potential. In the present study, we use clustered regularly interspaced palindromic repeats (CRISPR)-mediated knockdown of FOXP3 in MT-2 cells to understand the transcriptional and functional changes that occur when FOXP3 is lost and to compare MT-2 cells with primary human Tregs. We demonstrate that loss of FOXP3 affects the transcriptome of MT-2 cells and that FOXP3's potential downstream targets include a wide range of transcripts that participate in the cell cycle, promote growth and contribute to inflammatory processes, but do not wholly simulate previously reported human primary Treg transcriptional changes in the absence of FOXP3. We also demonstrate that FOXP3 regulates cell cycling and proliferation, expression of molecules crucial to Treg function and MT-2 cell-suppressive activities. Thus, MT-2 cells offer opportunities to address regulatory T-cell functions in vitro.


Assuntos
Terapia de Imunossupressão , Linfócitos T Reguladores , Humanos , Linhagem Celular , Tolerância Imunológica , Fatores de Transcrição Forkhead/metabolismo
4.
Noncoding RNA ; 9(6)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37987362

RESUMO

BACKGROUND: Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS: In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS: We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 µm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION: The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.

5.
Elife ; 122023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819053

RESUMO

TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Disfunção Cognitiva , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteinopatias TDP-43 , Humanos , Animais , Camundongos , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Modelos Animais de Doenças , RNA
6.
J Gastrointest Oncol ; 14(4): 1735-1745, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37720443

RESUMO

Background: Colorectal cancer (CRC) is a leading cause of death worldwide. SRY-box transcription factor 9 (SOX9) participates in organogenesis and cell differentiation in normal tissues but has been involved in carcinogenesis development. Cancer stem cells (CSCs) are a small population of cells present in solid tumors that contribute to increased tumor heterogeneity, metastasis, chemoresistance, and relapse. CSCs have properties such as self-renewal and differentiation, which can be modulated by many factors. Currently, the role of SOX9 in the maintenance of the stem phenotype has not been well elucidated, thus, in this work we evaluated the effect of the absence of SOX9 in the stem phenotype of CRC cells. Methods: We knockout (KO) SOX9 in the undifferentiated CRC cell line HCT116 and evaluated their stemness properties using sphere formation assay, differentiation assay, and immunophenotyping. Results: SOX9-KO affected the epithelial morphology of HCT116 cells and stemness characteristics such as its pluripotency signature with the increase of SOX2 as a compensatory mechanism to induce SOX9 expression, the increase of KLF4 as a differentiation feature, as well as the inhibition of the stem cell markers CD44 and CD73. In addition, SOX9-KO cells gain the epithelial-mesenchymal transition (EMT) phenotype with a significant upregulation of CDH2. Furthermore, our results showed a remarkable effect on first- and second-sphere formation, being SOX9-KO cells less capable of forming high-size-resistant spheres. Nevertheless, CSCs surface markers were not affected during the differentiation assay. Conclusions: Collectively, our findings supply evidence that SOX9 promotes the maintenance of stemness properties in CRC-CSCs.

7.
Sci Rep ; 13(1): 6118, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059819

RESUMO

Tau tubulin kinase 1 and 2 (TTBK1/2) are highly homologous kinases that are expressed and mediate disease-relevant pathways predominantly in the brain. Distinct roles for TTBK1 and TTBK2 have been delineated. While efforts have been devoted to characterizing the impact of TTBK1 inhibition in diseases like Alzheimer's disease and amyotrophic lateral sclerosis, TTBK2 inhibition has been less explored. TTBK2 serves a critical function during cilia assembly. Given the biological importance of these kinases, we designed a targeted library from which we identified several chemical tools that engage TTBK1 and TTBK2 in cells and inhibit their downstream signaling. Indolyl pyrimidinamine 10 significantly reduced the expression of primary cilia on the surface of human induced pluripotent stem cells (iPSCs). Furthermore, analog 10 phenocopies TTBK2 knockout in iPSCs, confirming a role for TTBK2 in ciliogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
8.
Toxicol In Vitro ; 83: 105412, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35688329

RESUMO

The liver is a pivotal organ regulating critical developmental stages of fetal metabolism and detoxification. Though numerous studies have evaluated links between prenatal/perinatal exposures and adverse health outcomes in the developing fetus, the central role of liver to health disruptions resulting from these exposures remains understudied, especially concerning early development and later-in-life health outcomes. While numerous in vitro methods for evaluating liver toxicity have been established, the use of iPSC-derived hepatocytes appears to be particularly well suited to contribute to this critical research gap due to their potential to model a diverse range of disease phenotypes and different stages of liver development. The following key aspects are reviewed: (1) an introduction to developmental liver toxicity; (2) an introduction to embryonic and induced pluripotent stem cell models; (3) methods and challenges for deriving liver cells from stem cells; and (4) applications for iPSC-derived hepatocytes to evaluate liver developmental stages and their associated responses to insults. We conclude that iPSC-derived hepatocytes have great potential for informing liver toxicity and underlying disease mechanisms via the generation of patient-specific iPSCs; implementing large-scale drug and chemical screening; evaluating general biological responses as a potential surrogate target cell; and evaluating inter-individual disease susceptibility and response variability.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Gravidez
9.
Stem Cell Res ; 54: 102421, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34130156

RESUMO

The generation of induced pluripotent stem cells (iPSCs) from healthy individuals is an invaluable resource as reference control in disease modeling and drug discovery. This paper details the reprogramming of peripheral blood mononuclear cells (PBMCs) isolated from a healthy 27 years-old male using non-integration technology. The derived iPSCs displayed typical pluripotent stem cell morphology, the capacity to differentiate into the three germ layers, and normal karyotype. This iPSC line will be used as a reference control to study the Cerebral Cavernous Malformation disease mechanism.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Células-Tronco Pluripotentes Induzidas , Adulto , Diferenciação Celular , Reprogramação Celular , Camadas Germinativas , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Leucócitos Mononucleares , Masculino
10.
Genes (Basel) ; 11(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198240

RESUMO

DNA methyltransferases (DNMTs) play an essential role in DNA methylation and transcriptional regulation in the genome. DNMTs, along with other poorly studied elements, modulate the dynamic DNA methylation patterns of embryonic and adult cells. We summarize the current knowledge on the molecular mechanism of DNMTs' functional targeting to maintain genome-wide DNA methylation patterns. We focus on DNMTs' intrinsic characteristics, transcriptional regulation, and post-transcriptional modifications. Furthermore, we focus special attention on the DNMTs' specificity for target sites, including key cis-regulatory factors such as CpG content, common motifs, transcription factors (TF) binding sites, lncRNAs, and histone marks to regulate DNA methylation. We also review how complexes of DNMTs/TFs or DNMTs/lncRNAs are involved in DNA methylation in specific genome regions. Understanding these processes is essential because the spatiotemporal regulation of DNA methylation modulates gene expression in health and disease.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/genética , Código das Histonas/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , 5-Metilcitosina/metabolismo , Animais , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilases de Modificação do DNA/metabolismo , Humanos , Regiões Promotoras Genéticas
11.
Stem Cell Res ; 49: 102015, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038744

RESUMO

Induced pluripotent stem cells (iPSCs) generated from young, healthy individuals are valuable tools for investigating molecular disease mechanisms during the early development of the brain vasculature. We generated an iPSC line from peripheral blood mononuclear cells (PBMCs) isolated from a healthy 13-yeard old female donor using the Sendai virus. The iPSCs differentiated into endothelial cells, astrocytes, and neurons. This iPSC line can serve as a healthy reference control for comparative studies in drug development and modeling the early onset of Cerebral Cavernous Malformation (CCM).


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Endoteliais , Feminino , Humanos , Leucócitos Mononucleares , Vírus Sendai/genética
12.
Bio Protoc ; 10(20): e3788, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659443

RESUMO

Induced pluripotent stem cells (iPSCs) are genetically reprogrammed somatic cells that exhibit features identical to those of embryonic stem cells (ESCs). Multiple approaches are available to derive iPSCs, among which the Sendai virus is the most effective at reprogramming different cell types. Here we describe a rapid, efficient, safe, and reliable approach to reprogram human fibroblasts into iPSCs that are compatible with future iPSCs uses such as genome editing and differentiation to a transplantable cell type.

13.
Elife ; 82019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682229

RESUMO

Alexander disease (AxD) is a fatal neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP), which supports the structural integrity of astrocytes. Over 70 GFAP missense mutations cause AxD, but the mechanism linking different mutations to disease-relevant phenotypes remains unknown. We used AxD patient brain tissue and induced pluripotent stem cell (iPSC)-derived astrocytes to investigate the hypothesis that AxD-causing mutations perturb key post-translational modifications (PTMs) on GFAP. Our findings reveal selective phosphorylation of GFAP-Ser13 in patients who died young, independently of the mutation they carried. AxD iPSC-astrocytes accumulated pSer13-GFAP in cytoplasmic aggregates within deep nuclear invaginations, resembling the hallmark Rosenthal fibers observed in vivo. Ser13 phosphorylation facilitated GFAP aggregation and was associated with increased GFAP proteolysis by caspase-6. Furthermore, caspase-6 was selectively expressed in young AxD patients, and correlated with the presence of cleaved GFAP. We reveal a novel PTM signature linking different GFAP mutations in infantile AxD.


Assuntos
Doença de Alexander/metabolismo , Biomarcadores/metabolismo , Caspases/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Adulto , Doença de Alexander/diagnóstico , Doença de Alexander/genética , Astrócitos/metabolismo , Sítios de Ligação/genética , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Proteína Glial Fibrilar Ácida/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Filamentos Intermediários/metabolismo , Mutação , Fosforilação , Proteólise , Índice de Gravidade de Doença
14.
Mol Cancer Res ; 17(7): 1503-1518, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000582

RESUMO

Screening of an inhibitor library targeting kinases and epigenetic regulators identified several molecules having antiproliferative synergy with extraterminal domain (BET) bromodomain (BD) inhibitors (JQ1, OTX015) in triple-negative breast cancer (TNBC). GSK2801, an inhibitor of BAZ2A/B BDs, of the imitation switch chromatin remodeling complexes, and BRD9, of the SWI/SNF complex, demonstrated synergy independent of BRD4 control of P-TEFb-mediated pause-release of RNA polymerase II. GSK2801 or RNAi knockdown of BAZ2A/B with JQ1 selectively displaced BRD2 at promoters/enhancers of ETS-regulated genes. Additional displacement of BRD2 from rDNA in the nucleolus coincided with decreased 45S rRNA, revealing a function of BRD2 in regulating RNA polymerase I transcription. In 2D cultures, enhanced displacement of BRD2 from chromatin by combination drug treatment induced senescence. In spheroid cultures, combination treatment induced cleaved caspase-3 and cleaved PARP characteristic of apoptosis in tumor cells. Thus, GSK2801 blocks BRD2-driven transcription in combination with BET inhibitor and induces apoptosis of TNBC. IMPLICATIONS: Synergistic inhibition of BDs encoded in BAZ2A/B, BRD9, and BET proteins induces apoptosis of TNBC by a combinatorial suppression of ribosomal DNA transcription and ETS-regulated genes.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Indolizinas/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Polimerase II/genética , RNA Ribossômico/genética , Receptores de Superfície Celular/antagonistas & inibidores , Sulfonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
15.
Mol Syst Biol ; 14(9): e8140, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177503

RESUMO

It is well known that clonal cells can make different fate decisions, but it is unclear whether these decisions are determined during, or before, a cell's own lifetime. Here, we engineered an endogenous fluorescent reporter for the pluripotency factor OCT4 to study the timing of differentiation decisions in human embryonic stem cells. By tracking single-cell OCT4 levels over multiple cell cycle generations, we found that the decision to differentiate is largely determined before the differentiation stimulus is presented and can be predicted by a cell's preexisting OCT4 signaling patterns. We further quantified how maternal OCT4 levels were transmitted to, and distributed between, daughter cells. As mother cells underwent division, newly established OCT4 levels in daughter cells rapidly became more predictive of final OCT4 expression status. These results imply that the choice between developmental cell fates can be largely predetermined at the time of cell birth through inheritance of a pluripotency factor.


Assuntos
Diferenciação Celular/genética , Rastreamento de Células/métodos , Células-Tronco Embrionárias Humanas/metabolismo , Padrões de Herança , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular/genética , Regulação da Expressão Gênica , Genes Reporter , Células-Tronco Embrionárias Humanas/citologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Proteína Vermelha Fluorescente
16.
Cancer Discov ; 7(3): 302-321, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108460

RESUMO

Targeting the dysregulated BRAF-MEK-ERK pathway in cancer has increasingly emerged in clinical trial design. Despite clinical responses in specific cancers using inhibitors targeting BRAF and MEK, resistance develops often involving nongenomic adaptive bypass mechanisms. Inhibition of MEK1/2 by trametinib in patients with triple-negative breast cancer (TNBC) induced dramatic transcriptional responses, including upregulation of receptor tyrosine kinases (RTK) comparing tumor samples before and after one week of treatment. In preclinical models, MEK inhibition induced genome-wide enhancer formation involving the seeding of BRD4, MED1, H3K27 acetylation, and p300 that drives transcriptional adaptation. Inhibition of the P-TEFb-associated proteins BRD4 and CBP/p300 arrested enhancer seeding and RTK upregulation. BRD4 bromodomain inhibitors overcame trametinib resistance, producing sustained growth inhibition in cells, xenografts, and syngeneic mouse TNBC models. Pharmacologic targeting of P-TEFb members in conjunction with MEK inhibition by trametinib is an effective strategy to durably inhibit epigenomic remodeling required for adaptive resistance.Significance: Widespread transcriptional adaptation to pharmacologic MEK inhibition was observed in TNBC patient tumors. In preclinical models, MEK inhibition induces dramatic genome-wide modulation of chromatin, in the form of de novo enhancer formation and enhancer remodeling. Pharmacologic targeting of P-TEFb complex members at enhancers is an effective strategy to durably inhibit such adaptation. Cancer Discov; 7(3); 302-21. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.


Assuntos
Antineoplásicos/uso terapêutico , Elementos Facilitadores Genéticos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Azepinas/uso terapêutico , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Metilação de DNA , Receptor com Domínio Discoidina 1/genética , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Epigênese Genética , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Camundongos Endogâmicos BALB C , Camundongos SCID , Terapia de Alvo Molecular , Proteínas Nucleares/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Interferência de RNA , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 11(3): 390-404, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25865888

RESUMO

Therapeutics that target ERBB2, such as lapatinib, often provide initial clinical benefit, but resistance frequently develops. Adaptive responses leading to lapatinib resistance involve reprogramming of the kinome through reactivation of ERBB2/ERBB3 signaling and transcriptional upregulation and activation of multiple tyrosine kinases. The heterogeneity of induced kinases prevents their targeting by a single kinase inhibitor, underscoring the challenge of predicting effective kinase inhibitor combination therapies. We hypothesized that, to make the tumor response to single kinase inhibitors durable, the adaptive kinome response itself must be inhibited. Genetic and chemical inhibition of BET bromodomain chromatin readers suppresses transcription of many lapatinib-induced kinases involved in resistance, including ERBB3, IGF1R, DDR1, MET, and FGFRs, preventing downstream SRC/FAK signaling and AKT reactivation. Combining inhibitors of kinases and chromatin readers prevents kinome adaptation by blocking transcription, generating a durable response to lapatinib, and overcoming the dilemma of heterogeneity in the adaptive response.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/fisiologia , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Lapatinib , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Front Oncol ; 3: 79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23596564

RESUMO

Breast cancers with lactating features, some of which are associated with pregnancy and lactation, are often poorly differentiated, lack estrogen receptor, progesterone receptor, and HER2 expression and have high mortality. Very little is known about the molecular mechanisms that drive uncontrolled cell proliferation in these tumors and confer lactating features. We have recently reported expression of OCT4 and associated embryonic stem cell self-renewal genes in the normal lactating breast and breastmilk stem cells (hBSCs). This prompted us to examine OCT4 expression in breast cancers with lactating features and compare it with that observed during normal lactation, using rare specimens of human lactating breast. In accordance with previous literature, the normal resting breast (from non-pregnant, non-lactating women) showed minimal OCT4 nuclear expression (0.9%). However, this increased in the normal lactating breast (11.4%), with further increase in lactating adenomas, lactating carcinomas, and pregnancy-associated breast cancer (30.7-48.3%). OCT4 was expressed in the epithelium and at lower levels in the stroma, and was co-localized with NANOG. Comparison of normal non-tumorigenic hBSCs with OCT4-overexpressing tumorigenic breast cell lines (OTBCs) demonstrated upregulation of OCT4, SOX2, and NANOG in both systems, but OTBCs expressed OCT4 at significantly higher levels than SOX2 and NANOG. Similar to hBSCs, OTBCs displayed multi-lineage differentiation potential, including the ability to differentiate into functional lactocytes synthesizing milk proteins both in vitro and in vivo. Based on these findings, we propose a hypothesis of normal and malignant transformation in the breast, which centers on OCT4 and its associated gene network. Although minimal expression of these embryonic genes can be seen in the breast in its resting state throughout life, a controlled program of upregulation of this gene network may be a potential regulator of the normal remodeling of the breast toward a milk-secretory organ during pregnancy and lactation. Deregulation of this gene network either within or outside pregnancy and lactation may lead to aberrant breast cell proliferation and malignant transformation, suggesting a role of these genes in both normal lactation and breast oncogenesis.

19.
Epigenetics ; 8(2): 164-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23314702

RESUMO

The gene Oct4 encodes a transcription factor critical for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition, improper re-activation of Oct4 contributes to oncogenic processes. Herein, we describe a novel designer zinc finger protein (ZFP) capable of upregulating the endogenous Oct4 promoter in a panel of breast and ovarian cell lines carrying a silenced gene. In some ovarian tumor lines, the ZFP triggered a strong reactivation of Oct4, with levels of expression comparable with exogenous Oct4 cDNA delivery. Surprisingly, the reactivation of Oct4 required a KRAB domain for effective upregulation of the endogenous gene. While KRAB-containing ZFPs are traditionally described as transcriptional repressors, our results suggest that these proteins could, in certain genomic contexts, function as potent activators and, thus, outline an emerging novel function of KRAB-ZFPs. In addition, we document a novel ZFP that could be used for the epigenetic reprograming of cancer cells.


Assuntos
Fator 3 de Transcrição de Octâmero/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Fator 3 de Transcrição de Octâmero/metabolismo , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Regulação para Cima , Dedos de Zinco/genética
20.
J Biol Chem ; 287(35): 29873-86, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22782891

RESUMO

Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Experimentais/metabolismo , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/biossíntese , Dedos de Zinco , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Serpinas/biossíntese , Tetraspaninas/genética , Tetraspaninas/metabolismo , Fatores de Transcrição/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA