Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746372

RESUMO

The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as the host adapts to wild environments. These interactions are readily interrogated because of the low taxonomic and numeric complexity of the flies' bacterial communities. Previous work has established that host genotype, the environment, diet, and interspecies microbial interactions can all influence host fitness and microbiota composition, but the specific processes and characters mediating these processes are incompletely understood. Here, we compared the variation in microbiota composition between wild-derived fly populations when flies could choose between the microorganisms in their diets and when flies were reared under environmental perturbation (different humidities). We also compared the colonization of the resident and transient microorganisms. We show that the ability to choose between microorganisms in the diet and the environmental condition of the flies can influence the relative abundance of the microbiota. There were also key differences in the abundances of the resident and transient microbiota. However, the microbiota only differed between populations when the flies were reared at humidities at or above 50% relative humidity. We also show that elevated humidity determined the penetrance of a gradient in host genetic selection on the microbiota that is associated with the latitude the flies were collected from. Finally, we show that the treatment-dependent variation in microbiota composition is associated with variation in host stress survival. Together, these findings emphasize that host genetic selection on the microbiota composition of a model animal host can be patterned with the source geography, and that such variation has the potential to influence their survival in the wild. Importance: The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as hosts adapt in wild environments. Our understanding of what causes geographic variation in the fruit fly microbiota remains incomplete. Previous work has shown that the D. melanogaster microbiota has relatively low numerical and taxonomic complexity. Variation in the fly microbiota composition can be attributed to environmental characters and host genetic variation, and variation in microbiota composition can be patterned with the source location of the flies. In this work we explored three possible causes of patterned variation in microbiota composition. We show that host feeding choices, the host niche colonized by the bacteria, and a single environmental character can all contribute to variation in microbiota composition. We also show that penetrance of latitudinally-patterned host genetic selection is only observed at elevated humidities. Together, these results identify several factors that influence microbiota composition in wild fly genotypes and emphasize the interplay between environmental and host genetic factors in determining the microbiota composition of these model hosts.

2.
Microorganisms ; 8(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861554

RESUMO

We investigated the impacts of drought on ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a salt marsh and compared the response to the total bacterial community. We analyzed abundance and community composition of amoA genes by QPCR and TRFLP, respectively, in three vegetation zones in 2014 (pre-drought), 2016 (drought), and 2017 (post-drought), and analyzed bacterial 16S rRNA genes by QPCR, TRFLP, and MiSeq analyses. AOA and AOB abundance in the Spartina patens zone increased significantly in 2016, while abundance decreased in the tall S. alterniflora zone, and showed little change in the short S. alterniflora zone. Total bacterial abundance declined annually in all vegetation zones. Significant shifts in community composition were detected in 2016 in two of the three vegetation zones for AOA and AOB, and in all three vegetation zones for total bacteria. Abundance and community composition of AOA and AOB returned to pre-drought conditions by 2017, while bacterial abundance continued to decline, suggesting that nitrifiers may be more resilient to drought than other bacterial communities. Finding vegetation-specific drought responses among N-cycling microbes may have broad implications for changes in N availability and marsh productivity, particularly if vegetation patterns continue to shift as predicted due to sea level rise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA