RESUMO
Protein folding homeostasis in the endoplasmic reticulum (ER) is regulated by a signaling network, termed the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER membrane-resident kinase/RNase that mediates signal transmission in the most evolutionarily conserved branch of the UPR. Dimerization and/or higher-order oligomerization of IRE1 are thought to be important for its activation mechanism, yet the actual oligomeric states of inactive, active, and attenuated mammalian IRE1 complexes remain unknown. We developed an automated two-color single-molecule tracking approach to dissect the oligomerization of tagged endogenous human IRE1 in live cells. In contrast to previous models, our data indicate that IRE1 exists as a constitutive homodimer at baseline and assembles into small oligomers upon ER stress. We demonstrate that the formation of inactive dimers and stress-dependent oligomers is fully governed by IRE1's lumenal domain. Phosphorylation of IRE1's kinase domain occurs more slowly than oligomerization and is retained after oligomers disassemble back into dimers. Our findings suggest that assembly of IRE1 dimers into larger oligomers specifically enables trans-autophosphorylation, which in turn drives IRE1's RNase activity.
Our cells contain many different compartments that each perform specific tasks. A cellular compartment known as the endoplasmic reticulum is responsible for making many of the proteins the cell requires and transporting them around the cell. It is important that the endoplasmic reticulum remains healthy and, therefore, cells use a protein called IRE1 that senses when this compartment is under stress. IRE1 then sends a signal to the control center of the cell (known as the nucleus) to ask for help. Previous studies suggest that IRE1 assembles into either pairs or larger groups of molecules known as oligomers when it senses that the endoplasmic reticulum is under stress. However, it remains unclear whether such assembly is the main switch that turns IRE1 on and, if so, how many molecules need to come together to flip the switch. Here, Belyy et al. genetically engineered human bone cancer cells to attach a mark known as a HaloTag to IRE1.The team developed a microscopy approach to count, in living cells, how many tagged IRE1 molecules join. The experiments indicated that IRE1 proteins were generally found as pairs in unstressed cells. When the endoplasmic reticulum experienced stress, IRE1 proteins briefly assembled into oligomers before disassembling back into pairs. Mutated versions of IRE1 revealed the exact parts of IRE1 that connect the pairs and the larger oligomers. These findings suggest that the assembly of IRE1 pairs into oligomers plays a major part in the activation of IRE1 to send a stress signal to the nucleus. IRE1 signaling is closely implicated in both cancer biology and aging, and therefore, understanding how it works may aid the development of new therapies for cancer, dementia, and other health conditions affecting older people. Furthermore, the microscopy approach developed in this work could be adapted to study other proteins that relay signals in living cells.
Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Animais , Endorribonucleases/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinases , Ribonucleases/metabolismo , Resposta a Proteínas não DobradasRESUMO
The mitochondrial AAA (ATPase Associated with diverse cellular Activities) protein ATAD1 (in humans; Msp1 in yeast) removes mislocalized membrane proteins, as well as stuck import substrates from the mitochondrial outer membrane, facilitating their re-insertion into their cognate organelles and maintaining mitochondria's protein import capacity. In doing so, it helps to maintain proteostasis in mitochondria. How ATAD1 tackles the energetic challenge to extract hydrophobic membrane proteins from the lipid bilayer and what structural features adapt ATAD1 for its particular function has remained a mystery. Previously, we determined the structure of Msp1 in complex with a peptide substrate (Wang et al., 2020). The structure showed that Msp1's mechanism follows the general principle established for AAA proteins while adopting several structural features that specialize it for its function. Among these features in Msp1 was the utilization of multiple aromatic amino acids to firmly grip the substrate in the central pore. However, it was not clear whether the aromatic nature of these amino acids were required, or if they could be functionally replaced by aliphatic amino acids. In this work, we determined the cryo-EM structures of the human ATAD1 in complex with a peptide substrate at near atomic resolution. The structures show that phylogenetically conserved structural elements adapt ATAD1 for its function while generally adopting a conserved mechanism shared by many AAA proteins. We developed a microscopy-based assay reporting on protein mislocalization, with which we directly assessed ATAD1's activity in live cells and showed that both aromatic amino acids in pore-loop 1 are required for ATAD1's function and cannot be substituted by aliphatic amino acids. A short α-helix at the C-terminus strongly facilitates ATAD1's oligomerization, a structural feature that distinguishes ATAD1 from its closely related proteins.
Assuntos
Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas AAA/metabolismo , Adenosina Trifosfatases/metabolismo , Aminoácidos , Aminoácidos Aromáticos , Humanos , Proteínas de Membrana/metabolismo , Proteína 1 de Superfície de Merozoito , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Afinidade de Anticorpos , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , Testes de Neutralização , Ligação Proteica , Estabilidade Proteica , Anticorpos de Domínio Único/química , Glicoproteína da Espícula de Coronavírus/química , Células VeroRESUMO
Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.
RESUMO
Mitochondrial function depends crucially on the maintenance of multiple mitochondrial DNA (mtDNA) copies. Surprisingly, the cellular mechanisms regulating mtDNA copy number remain poorly understood. Through a systematic high-throughput approach in Saccharomyces cerevisiae, we determined mtDNA-to-nuclear DNA ratios in 5148 strains lacking nonessential genes. The screen revealed MRX6, a largely uncharacterized gene, whose deletion resulted in a marked increase in mtDNA levels, while maintaining wild type-like mitochondrial structure and cell size. Quantitative superresolution imaging revealed that deletion of MRX6 alters both the size and the spatial distribution of mtDNA nucleoids. We demonstrate that Mrx6 partially colocalizes with mtDNA within mitochondria and interacts with the conserved Lon protease Pim1 in a complex that also includes Mam33 and the Mrx6-related protein Pet20. Acute depletion of Pim1 phenocopied the high mtDNA levels observed in Δmrx6 cells. No further increase in mtDNA copy number was observed upon depletion of Pim1 in Δmrx6 cells, revealing an epistatic relationship between Pim1 and Mrx6. Human and bacterial Lon proteases regulate DNA replication by degrading replication initiation factors, suggesting a model in which Pim1 acts similarly with the Mrx6 complex, providing a scaffold linking it to mtDNA.
Assuntos
Proteases Dependentes de ATP/metabolismo , Sequência Conservada , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Evolução Molecular , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Serina Endopeptidases/metabolismo , Deleção de Genes , Testes Genéticos , Mitocôndrias/metabolismo , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Proteínas Ribossômicas/química , Proteínas de Saccharomyces cerevisiae/químicaRESUMO
The cytoskeleton forms a dynamic network that generates fluctuations larger than thermal agitation of the cytoplasm1. Here, we tested whether dynein, a minus-end-directed microtubule (MT) motor2, can harness energy from these fluctuations using optical trapping in vitro. We show that dynein forms an asymmetric slip bond with MTs, where its detachment rate increases more slowly under hindering forces than assisting forces. This asymmetry enables dynein to generate unidirectional motility towards the minus-end from force fluctuations. Consistent with our model, oscillatory forces exerted by the trap drive dynein stepping without net force and ATP. Dynein is capable of ratcheting towards the minus-end even when the net force is in the plus-end direction. With ATP, force oscillations increase the velocity and stall force of dynein as it transports cargos and glides MTs. Therefore, dynein is a mechanical ratchet that rectifies cytoskeletal fluctuations to move faster and resists higher forces along MTs.
RESUMO
The endoplasmic reticulum (ER) membrane-resident stress sensor inositol-requiring enzyme 1 (IRE1) governs the most evolutionarily conserved branch of the unfolded protein response. Upon sensing an accumulation of unfolded proteins in the ER lumen, IRE1 activates its cytoplasmic kinase and ribonuclease domains to transduce the signal. IRE1 activity correlates with its assembly into large clusters, yet the biophysical characteristics of IRE1 clusters remain poorly characterized. We combined superresolution microscopy, single-particle tracking, fluorescence recovery, and photoconversion to examine IRE1 clustering quantitatively in living human and mouse cells. Our results revealed that: 1) In contrast to qualitative impressions gleaned from microscopic images, IRE1 clusters comprise only a small fraction (â¼5%) of the total IRE1 in the cell; 2) IRE1 clusters have complex topologies that display features of higher-order organization; 3) IRE1 clusters contain a diffusionally constrained core, indicating that they are not phase-separated liquid condensates; 4) IRE1 molecules in clusters remain diffusionally accessible to the free pool of IRE1 molecules in the general ER network; 5) when IRE1 clusters disappear at later time points of ER stress as IRE1 signaling attenuates, their constituent molecules are released back into the ER network and not degraded; 6) IRE1 cluster assembly and disassembly are mechanistically distinct; and 7) IRE1 clusters' mobility is nearly independent of cluster size. Taken together, these insights define the clusters as dynamic assemblies with unique properties. The analysis tools developed for this study will be widely applicable to investigations of clustering behaviors in other signaling proteins.
Assuntos
Endorribonucleases/metabolismo , Microscopia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Análise por Conglomerados , Citosol/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/química , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/química , Ribonucleases/metabolismo , Transdução de Sinais , Resposta a Proteínas não DobradasRESUMO
Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signalling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density. Here we develop the PhotoGate technique that controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. PhotoGate bypasses the requirement of photoactivation to track single particles at surface densities two orders of magnitude greater than the single-molecule detection limit. Using this method, we observe ligand-induced dimerization of a receptor tyrosine kinase at the cell surface and directly measure binding and dissociation of signalling molecules from early endosomes in a dense cytoplasm with single-molecule resolution. We additionally develop a numerical simulation suite for rapid quantitative optimization of Photogate experimental conditions. PhotoGate yields longer tracking times and more accurate measurements of complex stoichiometry than existing single-molecule imaging methods.
Assuntos
Microscopia de Fluorescência/métodos , Biologia Molecular/métodos , Imagem Molecular/métodos , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Simulação por Computador , Endossomos/metabolismo , Receptores ErbB/análise , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lasers , Biologia Molecular/instrumentação , Imagem Molecular/instrumentação , Fotodegradação , Multimerização ProteicaRESUMO
Kinesin and dynein motors transport intracellular cargos bidirectionally by pulling them in opposite directions along microtubules, through a process frequently described as a 'tug of war'. While kinesin produces 6 pN of force, mammalian dynein was found to be a surprisingly weak motor (0.5-1.5 pN) in vitro, suggesting that many dyneins are required to counteract the pull of a single kinesin. Mammalian dynein's association with dynactin and Bicaudal-D2 (BICD2) activates its processive motility, but it was unknown how this affects dynein's force output. Here, we show that formation of the dynein-dynactin-BICD2 (DDB) complex increases human dynein's force production to 4.3 pN. An in vitro tug-of-war assay revealed that a single DDB successfully resists a single kinesin. Contrary to previous reports, the clustering of many dyneins is not required to win the tug of war. Our work reveals the key role of dynactin and a cargo adaptor protein in shifting the balance of forces between dynein and kinesin motors during intracellular transport.
Assuntos
Complexo Dinactina/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Animais , Transporte Biológico , Citoesqueleto/metabolismo , Humanos , Mamíferos , Modelos BiológicosRESUMO
Cytoplasmic dynein is an AAA+ motor responsible for intracellular cargo transport and force generation along microtubules (MTs). Unlike kinesin and myosin, dynein contains multiple ATPase subunits, with AAA1 serving as the primary catalytic site. ATPase activity at AAA3 is also essential for robust motility, but its role in dynein's mechanochemical cycle remains unclear. Here, we introduced transient pauses in Saccharomyces cerevisiae dynein motility by using a slowly hydrolyzing ATP analog. Analysis of pausing behavior revealed that AAA3 hydrolyzes nucleotide an order of magnitude more slowly than AAA1, and the two sites do not coordinate. ATPase mutations to AAA3 abolish the ability of dynein to modulate MT release. Nucleotide hydrolysis at AAA3 lifts this 'MT gate' to allow fast motility. These results suggest that AAA3 acts as a switch that repurposes cytoplasmic dynein for fast cargo transport and MT-anchoring tasks in cells.
Assuntos
Dineínas do Citoplasma/metabolismo , Substâncias Macromoleculares/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Hidrólise , Saccharomyces cerevisiae/metabolismoRESUMO
Cytoplasmic dynein is a motor protein that walks along microtubules (MTs) and performs mechanical work to power a variety of cellular processes. It remains unclear how a dynein dimer is able to transport cargos against load without coordinating the stepping cycles of its two heads. Here by using a DNA-tethered optical trapping geometry, we find that the force-generating step of a head occurs in the MT-bound state, while the 'primed' unbound state is highly diffusional and only weakly biased to step towards the MT-minus end. The stall forces of the individual heads are additive, with both heads contributing equally to the maximal force production of the dimer. On the basis of these results, we propose that the heads of dynein utilize a 'load-sharing' mechanism, unlike kinesin and myosin. This mechanism may allow dynein to work against hindering forces larger than the maximal force produced by a single head.
Assuntos
Dineínas/química , Dineínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Dimerização , Dineínas/genética , Microtúbulos/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Cytoplasmic dynein is a dimeric motor that transports intracellular cargoes towards the minus end of microtubules (MTs). In contrast to other processive motors, stepping of the dynein motor domains (heads) is not precisely coordinated. Therefore, the mechanism of dynein processivity remains unclear. Here, by engineering the mechanical and catalytic properties of the motor, we show that dynein processivity minimally requires a single active head and a second inert MT-binding domain. Processivity arises from a high ratio of MT-bound to unbound time, and not from interhead communication. In addition, nucleotide-dependent microtubule release is gated by tension on the linker domain. Intramolecular tension sensing is observed in dynein's stepping motion at high interhead separations. On the basis of these results, we propose a quantitative model for the stepping characteristics of dynein and its response to chemical and mechanical perturbation.
Assuntos
Trifosfato de Adenosina/química , Dineínas/química , Microtúbulos/química , Adenosina Trifosfatases/química , Animais , Citoplasma/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/química , Método de Monte Carlo , Movimento (Física) , Mutação , Nucleotídeos/química , Nucleotídeos/genética , Óptica e Fotônica , Conformação Proteica , Engenharia de Proteínas/métodos , Multimerização Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Ouriços-do-Mar , Estresse Mecânico , Thermus/metabolismoRESUMO
Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions.
Assuntos
Citoesqueleto/metabolismo , Microscopia de Fluorescência/métodos , Proteínas Motores Moleculares/metabolismo , Humanos , Imagem MolecularRESUMO
The mechanosensitive channel of small conductance (MscS) is a bacterial tension-driven osmolyte release valve with homologues in many walled eukaryotic organisms. When stimulated by steps of tension in excised patches, Escherichia coli MscS exhibits transient opening followed by reversible adaptation and then complete inactivation. Here, we study properties of the inactivation transition, which renders MscS nonconductive and tension insensitive. Using special pressure protocols we demonstrate that adaptation and inactivation are sequential processes with opposite tension dependencies. In contrast to many eukaryotic channels, which inactivate from the open state, MscS inactivates primarily from the closed state because full openings by preconditioning pulses do not influence the degree of inactivation, and saturating tensions keeping channels open prevent inactivation. The easily opened A98S mutant lacks inactivation completely, whereas the L111S mutant with a right-shifted activation curve inactivates silently before reaching the threshold for opening. This suggests that opening and inactivation are two independent tension-driven pathways, both starting from the closed state. Analysis of tension dependencies for inactivation and recovery rates estimated the in-plane expansion (ΔA) associated with inactivation as 8.5 nm(2), which is about half of the area change for opening. Given that the interhelical contact between the outer TM1-TM2 pairs and the core TM3s is the force-transmitting path from the periphery to the gate, the determined ΔA now can be used as a constraining parameter for the models of the inactivated state in which the lipid-facing TM1-TM2 pairs are displaced and uncoupled from the gate.
Assuntos
Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ativação do Canal Iônico , Canais Iônicos/genética , Cinética , Mecanotransdução Celular/fisiologia , Modelos Moleculares , MutaçãoRESUMO
Mechanosensitive channel of small conductance (MscS), a tension-driven osmolyte release valve residing in the inner membrane of Escherichia coli, exhibits a complex adaptive behavior, whereas its functional counterpart, mechanosensitive channel of large conductance (MscL), was generally considered nonadaptive. In this study, we show that both channels exhibit similar adaptation in excised patches, a process that is completely separable from inactivation prominent only in MscS. When a membrane patch is held under constant pressure, adaptation of both channels is manifested as a reversible current decline. Their dose-response curves recorded with 1-10-s ramps of pressure are shifted toward higher tension relative to the curves measured with series of pulses, indicating decreased tension sensitivity. Prolonged exposure of excised patches to subthreshold tensions further shifts activation curves for both MscS and MscL toward higher tension with similar magnitude and time course. Whole spheroplast MscS recordings performed with simultaneous imaging reveal activation curves with a midpoint tension of 7.8 mN/m and the slope corresponding to approximately 15-nm(2) in-plane expansion. Inactivation was retained in whole spheroplast mode, but no adaptation was observed. Similarly, whole spheroplast recordings of MscL (V23T mutant) indicated no adaptation, which was present in excised patches. MscS activities tried in spheroplast-attached mode showed no adaptation when the spheroplasts were intact, but permeabilized spheroplasts showed delayed adaptation, suggesting that the presence of membrane breaks or edges causes adaptation. We interpret this in the framework of the mechanics of the bilayer couple linking adaptation of channels in excised patches to the relaxation of the inner leaflet that is not in contact with the glass pipette. Relaxation of one leaflet results in asymmetric redistribution of tension in the bilayer that is less favorable for channel opening.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Mecanotransdução Celular , Esferoplastos/metabolismo , Adaptação Fisiológica , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Potenciais da Membrana , Modelos Moleculares , Técnicas de Patch-Clamp , Pressão , Conformação Proteica , Relação Estrutura-Atividade , Fatores de TempoRESUMO
Under prolonged stimulation, the mechanosensitive channel MscS of Escherichia coli enters a tension-insensitive inactivated state. We transformed the delipidated crystal structure and restored the link between lipid-facing TM1 and TM2 and gate-forming TM3 helices. Joining the conserved Phe68 of TM2 with Leu111 of TM1, this buried contact mediated opening in steered molecular dynamics simulations with forces applied to the peripheral helices. Both F68S and L111S substitutions produced severe loss-of-function phenotypes in vivo by increasing the inactivation rate and promoting unusual 'silent' inactivation from the resting state. F68S also suppressed the noninactivating phenotype of G113A. The L111C cysteine buried in the TM2-TM3 crevice was accessible to methanethiosulfonate-ethyltrimethylammonium (MTSET) only in the inactivated state, which was stabilized upon modification by a positive charge. The restored interhelical contact thus is critically involved in force transmission from the lipid-facing helices to the gate, and inactivation appears to be a result of TM2-TM3 uncoupling.