Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Nat Nanotechnol ; 16(11): 1281-1291, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675410

RESUMO

Nanoparticle-sensitized photoporation is an upcoming approach for the intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hampered by safety and regulatory concerns. Here we show that light-sensitive iron oxide nanoparticles embedded in biocompatible electrospun nanofibres induce membrane permeabilization by photothermal effects without direct cellular contact with the nanoparticles. The photothermal nanofibres have been successfully used to deliver effector molecules, including CRISPR-Cas9 ribonucleoprotein complexes and short interfering RNA, to adherent and suspension cells, including embryonic stem cells and hard-to-transfect T cells, without affecting cell proliferation or phenotype. In vivo experiments furthermore demonstrated successful tumour regression in mice treated with chimeric antibody receptor T cells in which the expression of programmed cell death protein 1 (PD1) is downregulated after nanofibre photoporation with short interfering RNA to PD1. In conclusion, cell membrane permeabilization with photothermal nanofibres is a promising concept towards the safe and more efficient production of engineered cells for therapeutic applications, including stem cell or adoptive T cell therapy.


Assuntos
Imunoterapia Adotiva , Nanopartículas/química , Neoplasias/terapia , RNA Interferente Pequeno/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Sobrevivência Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Células MCF-7 , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Nanofibras/química , Nanopartículas/uso terapêutico , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Transfecção
3.
ACS Omega ; 6(28): 18110-18122, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308044

RESUMO

Different approaches for the determination of the 87Sr/86Sr isotope ratio of high-Rb glass are compared in this work to assess the suitability of minimally invasive approaches for applications on medieval stained glass (from the ancient Abbey of Stavelot in Belgium). It was found that pneumatic nebulization multicollector inductively coupled plasma-mass spectrometry (PN-MC-ICP-MS) after acid digestion and chromatographic isolation of the target analyte out of the sample matrix can still be seen as the preferred method for the high-precision isotopic analysis of Sr in glass with high Rb and rare-earth element (REE) concentrations. Alternatively, the use of laser ablation (LA) for sample introduction is a powerful technique for the direct analysis of solid samples. However, both the high Rb/Sr ratios in the samples of interest and the presence of REEs at sufficiently high concentrations lead to a large bias in LA-MC-ICP-MS, which cannot be corrected for, even by operating the MC-ICP-MS instrument at higher mass resolution and/or using mathematical corrections. It was demonstrated that LA tandem-ICP-MS (LA-ICP-MS/MS) using CH3F/He as the reaction gas to overcome spectral overlap in a mass-shift approach (chemical resolution) provides a viable alternative when (quasi) nondestructive analysis is required. This approach relies on the monitoring of Sr+ (m/z = 86, 87, and 88) ions as the corresponding SrF+ reaction product ions (m/z = 105, 106, and 107), thus avoiding the occurrence of spectral interference. Self-evidently, the isotope ratio precision attainable using sequential quadrupole-based ICP-MS instrumentation (0.3% RSD) was found to be significantly worse than that of high-precision MC-ICP-MS (0.03% RSD) with simultaneous detection, although it was still fit for the purpose of current applications. In addition to Sr isotopic analysis, the REE patterns and their potential influence on the Sr isotopic composition were evaluated by LA-ICP-MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA