Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Pharmacol ; 932: 175241, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058291

RESUMO

Organ fibrosis is accompanied by pathological angiogenesis. Discovering new ways to ameliorate pathological angiogenesis may bypass organ fibrosis. The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been implicated in organ injuries and its activation inhibits endothelial proliferation. Currently, a controversy exists as to whether cGAS/STING activation exacerbates inflammation and tissue injury or mitigates damage, and whether one of these effects predominates under specific context. This study unveiled a new antifibrotic cGAS/STING signaling pathway that suppresses pathological angiogenesis in liver and kidney fibrosis. We showed that cGAS expression was induced in fibrotic liver and kidney, but suppressed in endothelial cells. cGAS genetic deletion promoted liver and kidney fibrosis and pathological angiogenesis, including occurrence of endothelial-to-mesenchymal transition. Meanwhile, cGAS deletion upregulated profibrotic Yes-associated protein (YAP) signaling in endothelial cells, which was evidenced by the attenuation of organ fibrosis in mice specifically lacking endothelial YAP. Pharmacological targeting of cGAS/STING-YAP signaling by both a small-molecule STING agonist, SR-717, and a G protein-coupled receptor (GPCR)-based antagonist that blocks the profibrotic activity of endothelial YAP, attenuated liver and kidney fibrosis. Together, our data support that activation of cGAS/STING signaling mitigates organ fibrosis and suppresses pathological angiogenesis. Further, pharmacological targeting of cGAS/STING-YAP axis exhibits the potential to alleviate liver and kidney fibrosis.


Assuntos
Células Endoteliais , Proteínas de Sinalização YAP , Monofosfato de Adenosina , Animais , Células Endoteliais/metabolismo , Fibrose , Guanosina Monofosfato , Interferons , Proteínas de Membrana/metabolismo , Camundongos , Neovascularização Patológica , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
2.
Front Immunol ; 13: 906650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769476

RESUMO

There are few reports about the role of B10 cells in acute hepatitis B (AHB) infection. In this study, based on 48 acute hepatitis B infected patients, we analysis the correlation of B10 cells with HBV clinical prognosis. The results showed that B10 was positively correlated with HBsAg and HBeAg and inversely correlated with anti-HBs. The level of B10 in one week before HBsAg clearance was significantly lower than 2 weeks prior to HBsAg clearance and after 1-2 weeks of HBsAg clearance. B10 cell frequency displayed no correlation with HBV DNA; however, it showed significant temporal synchronization with hepatic inflammatory markers such as ALT. B10 level also associated with hospitalization time. These results indicated that B10 is closely related to the clinical prognosis of acute HBV infection.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B , Adulto , Antígenos E da Hepatite B , Vírus da Hepatite B , Humanos , Prognóstico
3.
Cell Rep ; 26(12): 3360-3368.e5, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893607

RESUMO

We previously reported a human monoclonal antibody, ZK2B10, capable of protection against Zika virus (ZIKV) infection and microcephaly in developing mouse embryos. Here, we report the structural features and mechanism of action of ZK2B10. The crystal structure at a resolution of 2.32 Å revealed that the epitope is located on the lateral ridge of DIII of the envelope glycoprotein. Cryo-EM structure with mature ZIKV showed that the antibody binds to DIIIs around the icosahedral 2-fold, 3-fold, and 5-fold axes, a distinct feature compared to those reported for DIII-specific antibodies. The binding of ZK2B10 to ZIKV has no detectable effect on viral attachment to target cells or on conformational changes of the E glycoprotein in the acidic environment, suggesting that ZK2B10 functions at steps between the formation of the fusion intermediate and membrane fusion. These results provide structural and mechanistic insights into how ZK2B10 mediates protection against ZIKV infection.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Proteínas do Envelope Viral/química , Zika virus/química , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Células HEK293 , Humanos , Células Vero
4.
ACS Infect Dis ; 5(5): 778-787, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30761887

RESUMO

In this article, a simple and effective high-throughput screening (HTS) assay was developed to identify anti-HBV compounds by using a HepAD38 luciferase reporter (HepAD38-luc) cell line that can effectively exclude the false positive hit compounds targeted on the tetracycline off (tet-off) regulation system. Through screening in-house chemical libraries, N-phenylpiperidine-3-carboxamide derivatives, represented by 1 and 2, were identified, while the other false positive hits (i.e., quinoxaline (3) and benzothiazin (4) derivatives) were simultaneously excluded. Compounds 1 and 2 exhibit strong inhibitory activity against HBV replication in both HepAD38 and HepG2.2.15 cells. Further studies revealed that 1 and 2 reduced extracellular HBV DNA, HBeAg, and intracellular HBV intermediates, including total DNA, RNA, and precore RNA of HBV. Size-exclusion chromatography (SEC) and electron microscopy (EM) investigations demonstrated that 1 and 2 remarkably induced the formation of morphologically intact capsids and accelerated the dynamics of capsid assembly, suggesting that both 1 and 2 were type I capsid assembly modulators (CAMs).


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Vírus da Hepatite B/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Montagem de Vírus/efeitos dos fármacos , Proteínas do Capsídeo/antagonistas & inibidores , Linhagem Celular , Vírus da Hepatite B/fisiologia , Luciferases , RNA Viral/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
5.
PLoS One ; 7(7): e40041, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848368

RESUMO

Due to its ability to form biofilms on medical devices, Staphylococcus epidermidis has emerged as a major pathogen of nosocomial infections. In this study, we investigated the role of the two-component signal transduction system ArlRS in regulating S. epidermidis biofilm formation. An ArlRS-deficient mutant, WW06, was constructed using S. epidermidis strain 1457 as a parental strain. Although the growth curve of WW06 was similar to that of SE1457, the mutant strain was unable to form biofilms in vitro. In a rabbit subcutaneous infection model, sterile disks made of polymeric materials were implanted subcutaneously followed with inoculation of WW06 or SE1457. The viable bacteria cells of WW06 recovered from biofilms on the embedded disks were much lower than that of SE1457. Complementation of arlRS genes expression from plasmid in WW06 restored biofilm-forming phenotype both in vivo and in vitro. WW06 maintained the ability to undergo initial attachment. Transcription levels of several genes involved in biofilm formation, including icaADBC, sigB, and sarA, were decreased in WW06, compared to SE1457; and icaR expression was increased in WW06, detected by real-time reverse-transcription PCR. The biofilm-forming phenotype was restored by overexpressing icaADBC in WW06 but not by overexpressing sigB, indicating that ArlRS regulates biofilm formation through the regulation of icaADBC. Gel shift assay showed that ArlR can bind to the promoter region of the ica operon. In conclusion, ArlRS regulates S. epidermidis biofilm formation in an ica-dependent manner, distinct from its role in S. aureus.


Assuntos
Proteínas de Bactérias/biossíntese , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/biossíntese , Regulação Bacteriana da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Staphylococcus epidermidis/fisiologia , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Mutação
6.
BMC Microbiol ; 11: 146, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21702925

RESUMO

BACKGROUND: Staphylococcus epidermidis (SE) has emerged as one of the most important causes of nosocomial infections. The SaeRS two-component signal transduction system (TCS) influences virulence and biofilm formation in Staphylococcus aureus. The deletion of saeR in S. epidermidis results in impaired anaerobic growth and decreased nitrate utilization. However, the regulatory function of SaeRS on biofilm formation and autolysis in S. epidermidis remains unclear. RESULTS: The saeRS genes of SE1457 were deleted by homologous recombination. The saeRS deletion mutant, SE1457ΔsaeRS, exhibited increased biofilm formation that was disturbed more severely (a 4-fold reduction) by DNase I treatment compared to SE1457 and the complementation strain SE1457saec. Compared to SE1457 and SE1457saec, SE1457ΔsaeRS showed increased Triton X-100-induced autolysis (approximately 3-fold) and decreased cell viability in planktonic/biofilm states; further, SE1457ΔsaeRS also released more extracellular DNA (eDNA) in the biofilms. Correlated with the increased autolysis phenotype, the transcription of autolysis-related genes, such as atlE and aae, was increased in SE1457ΔsaeRS. Whereas the expression of accumulation-associated protein was up-regulated by 1.8-fold in 1457ΔsaeRS, the expression of an N-acetylglucosaminyl transferase enzyme (encoded by icaA) critical for polysaccharide intercellular adhesin (PIA) synthesis was not affected by the deletion of saeRS. CONCLUSIONS: Deletion of saeRS in S. epidermidis resulted in an increase in biofilm-forming ability, which was associated with increased eDNA release and up-regulated Aap expression. The increased eDNA release from SE1457ΔsaeRS was associated with increased bacterial autolysis and decreased bacterial cell viability in the planktonic/biofilm states.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Staphylococcus epidermidis/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , Deleção de Genes , Teste de Complementação Genética , Viabilidade Microbiana , Transdução de Sinais , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento , Fatores de Transcrição/genética
7.
Proteome Sci ; 8: 28, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20529248

RESUMO

BACKGROUND: Hepatitis B virus (HBV) is a major cause of liver infection in human. Because of the lack of an appropriate cell culture system for supporting HBV infection efficiently, the cellular and molecular mechanisms of hepadnavirus infection remain incompletely understood. Duck heptatitis B virus (DHBV) can naturally infect primary duck hepatocytes (PDHs) that provide valuable model systems for studying hepadnavirus infection in vitro. In this report, we explored global changes in cellular protein expression in DHBV infected PDHs by two-dimension gel electrophoresis (2-DE) combined with MALDI-TOF/TOF tandem mass spectrometry (MS/MS). RESULTS: The effects of hepadnavirus infection on hepatocytes were investigated in DHBV infected PDHs by the 2-DE analysis. Proteomic profile of PDHs infected with DHBV were analyzed at 24, 72 and 120 h post-infection by comparing with uninfected PDHs, and 75 differentially expressed protein spots were revealed by 2-DE analysis. Among the selected protein spots, 51 spots were identified corresponding to 42 proteins by MS/MS analysis; most of them were matched to orthologous proteins of Gallus gallus, Anas platyrhynchos or other avian species, including alpha-enolase, lamin A, aconitase 2, cofilin-2 and annexin A2, etc. The down-regulated expression of beta-actin and annexin A2 was confirmed by Western blot analysis, and potential roles of some differentially expressed proteins in the virus-infected cells have been discussed. CONCLUSIONS: Differentially expressed proteins of DHBV infected PDHs revealed by 2-DE, are involved in carbohydrate metabolism, amino acid metabolism, stress responses and cytoskeleton processes etc, providing the insight to understanding of interactions between hepadnavirus and hepatocytes and molecular mechanisms of hepadnavirus pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA