Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10758-10764, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38007708

RESUMO

The mid-infrared (MIR) spectral region attracts attention for accurate chemical analysis using photonic devices. Few-layer graphene (FLG) polytypes are promising platforms, due to their broad absorption in this range and gate-tunable optical properties. Among these polytypes, the noncentrosymmetric ABCB/ACAB structure is particularly interesting, due to its intrinsic bandgap (8.8 meV) and internal polarization. In this study, we utilize scattering-scanning near-field microscopy to measure the optical response of all three tetralayer graphene polytypes in the 8.5-11.5 µm range. We employ a finite dipole model to compare these results to the calculated optical conductivity for each polytype obtained from a tight-binding model. Our findings reveal a significant discrepancy in the MIR optical conductivity response of graphene between the different polytypes than what the tight-binding model suggests. This observation implies an increased potential for utilizing the distinct tetralayer polytypes in photonic devices operating within the MIR range for chemical sensing and infrared imaging.

2.
Nat Mater ; 22(8): 937-938, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37524816
3.
Nature ; 612(7940): 465-469, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36352233

RESUMO

Ferroelectricity in atomically thin bilayer structures has been recently predicted1 and measured2-4 in two-dimensional materials with hexagonal non-centrosymmetric unit-cells. The crystal symmetry translates lateral shifts between parallel two-dimensional layers to sign changes in their out-of-plane electric polarization, a mechanism termed 'slide-tronics'4. These observations have been restricted to switching between only two polarization states under low charge carrier densities5-12, limiting the practical application of the revealed phenomena13. To overcome these issues, one should explore the nature of polarization in multi-layered van der Waals stacks, how it is governed by intra- and interlayer charge redistribution and to what extent it survives the addition of mobile charge carriers14. To explore these questions, we conduct surface potential measurements of parallel WSe2 and MoS2 multi-layers with aligned and anti-aligned configurations of the polar interfaces. We find evenly spaced, nearly decoupled potential steps, indicating highly confined interfacial electric fields that provide a means to design multi-state 'ladder-ferroelectrics'. Furthermore, we find that the internal polarization remains notable on electrostatic doping of mobile charge carrier densities as high as 1013 cm-2, with substantial in-plane conductivity. Using density functional theory calculations, we trace the extra charge redistribution in real and momentum spaces and identify an eventual doping-induced depolarization mechanism.

4.
Nat Nanotechnol ; 16(7): 745-746, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33941916
5.
Nature ; 576(7785): 75-79, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802019

RESUMO

Hydrodynamics, which generally describes the flow of a fluid, is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate1. Although various aspects of electron hydrodynamics have been revealed in recent experiments2-11, the fundamental spatial structure of hydrodynamic electrons-the Poiseuille flow profile-has remained elusive. Here we provide direct imaging of the Poiseuille flow of an electronic fluid, as well as a visualization of its evolution from ballistic flow. Using a scanning carbon nanotube single-electron transistor12, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperatures into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a 'phase diagram' that characterizes the electron flow regimes. Our results provide direct confirmation of Poiseuille flow in the solid state, and enable exploration of the rich physics of interacting electrons in real space.

6.
Nat Nanotechnol ; 14(5): 480-487, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858521

RESUMO

A variety of physical phenomena associated with nanoscale electron transport often results in non-trivial spatial voltage and current patterns, particularly in nonlocal transport regimes. While numerous techniques have been devised to image electron flows, the need remains for a nanoscale probe capable of simultaneously imaging current and voltage distributions with high sensitivity and minimal invasiveness, in a magnetic field, across a broad range of temperatures and beneath an insulating surface. Here we present a technique for spatially mapping electron flows based on a nanotube single-electron transistor, which achieves high sensitivity for both voltage and current imaging. In a series of experiments using high-mobility graphene devices, we demonstrate the ability of our technique to visualize local aspects of intrinsically nonlocal transport, as in ballistic flows, which are not easily resolvable via existing methods. This technique should aid in understanding the physics of two-dimensional electronic devices and enable new classes of experiments that image electron flow through buried nanostructures in the quantum and interaction-dominated regimes.

7.
Nat Commun ; 9(1): 4533, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382090

RESUMO

Viscous electron fluids have emerged recently as a new paradigm of strongly-correlated electron transport in solids. Here we report on a direct observation of the transition to this long-sought-for state of matter in a high-mobility electron system in graphene. Unexpectedly, the electron flow is found to be interaction-dominated but non-hydrodynamic (quasiballistic) in a wide temperature range, showing signatures of viscous flows only at relatively high temperatures. The transition between the two regimes is characterized by a sharp maximum of negative resistance, probed in proximity to the current injector. The resistance decreases as the system goes deeper into the hydrodynamic regime. In a perfect darkness-before-daybreak manner, the interaction-dominated negative response is strongest at the transition to the quasiballistic regime. Our work provides the first demonstration of how the viscous fluid behavior emerges in an interacting electron system.

8.
Nanoscale ; 10(6): 3020-3025, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29372736

RESUMO

Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 µm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density JC is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the ICRN product (IC is the critical current and RN the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

9.
Science ; 358(6368): 1303-1306, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217571

RESUMO

Conversion of electric current into heat involves microscopic processes that operate on nanometer length scales and release minute amounts of power. Although central to our understanding of the electrical properties of materials, individual mediators of energy dissipation have so far eluded direct observation. Using scanning nanothermometry with submicrokelvin sensitivity, we visualized and controlled phonon emission from individual atomic-scale defects in graphene. The inferred electron-phonon "cooling power spectrum" exhibits sharp peaks when the Fermi level comes into resonance with electronic quasi-bound states at such defects. Rare in the bulk but abundant at graphene's edges, switchable atomic-scale phonon emitters provide the dominant dissipation mechanism. Our work offers insights for addressing key materials challenges in modern electronics and enables control of dissipation at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA