Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Opt Express ; 30(1): 414-426, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201218

RESUMO

We present a low-cost, 3D-printed, and biocompatible fluidic device, engineered to produce laminar and homogeneous flow over a large field-of-view. Such a fluidic device allows us to perform multiplexed temporal monitoring of cell cultures compatible with the use of various pharmacological protocols. Therefore, specific properties of each of the observed cell cultures can be discriminated simultaneously during the same experiment. This was illustrated by monitoring the agonists-mediated cellular responses, with digital holographic microscopy, of four different cell culture models of cystic fibrosis. Quantitatively speaking, this multiplexed approach provides a time saving factor of around four to reveal specific cellular features.


Assuntos
Holografia , Microscopia , Técnicas de Cultura de Células/métodos , Holografia/métodos , Microscopia/métodos
2.
Nucleic Acids Res ; 47(18): e108, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31562528

RESUMO

The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.


Assuntos
Cromossomos/ultraestrutura , DNA/ultraestrutura , Metáfase/genética , Espectrofotometria Infravermelho/métodos , Animais , Núcleo Celular/ultraestrutura , Eucromatina/ultraestrutura , Heterocromatina/ultraestrutura , Humanos , Interfase/genética
3.
Sci Rep ; 8(1): 4291, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511214

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Sci Rep ; 7(1): 8852, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821864

RESUMO

Contactin-4 (CNTN4) is a complex cell adhesion molecule (CAM) localized at neuronal membranes, playing a key role in maintaining the mechanical integrity and signaling properties of the synapse. CNTN4 consists of six immunoglobulin C2 type (IgC2) domains and four fibronectin type III (FnIII) domains that are shared with many other CAMs. Mutations in CNTN4 gene have been linked to various psychiatric disorders. Toward elucidating the response of this modular protein to mechanical stress, we studied its force-induced unfolding using single molecule atomic force microscopy (smAFM) and steered molecular dynamics (SMD) simulations. Extensive smAFM and SMD data both indicate the distinctive mechanical behavior of the two types of modules distinguished by unique force-extension signatures. The data also reveal the heterogeneity of the response of the individual FNIII and IgC2 modules, which presumably plays a role in the adaptability of CNTN4 to maintaining cell-cell communication and adhesion properties under different conditions. Results show that extensive sampling of force spectra, facilitated by robot-enhanced AFM, can help reveal the existence of weak stabilizing interactions between the domains of multidomain proteins, and provide insights into the nanomechanics of such multidomain or heteromeric proteins.

5.
PLoS Comput Biol ; 12(8): e1005063, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27551746

RESUMO

The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in two different conditions: static (control) and fluid shear stress. The proposed methodology exhibited higher sensitivity values and similar accuracy compared to state-of-the-art methods.


Assuntos
Actinas/análise , Actinas/química , Citoesqueleto/química , Processamento de Imagem Assistida por Computador/métodos , Actinas/metabolismo , Algoritmos , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Camundongos , Microscopia de Fluorescência , Estresse Mecânico
6.
Proc Natl Acad Sci U S A ; 112(2): 378-81, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548177

RESUMO

The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.

7.
Cereb Cortex ; 24(1): 186-98, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23042737

RESUMO

The corpus callosum (CC) represents the major forebrain commissure connecting the 2 cerebral hemispheres. Midline crossing of callosal axons is controlled by several glial and neuronal guideposts specifically located along the callosal path, but it remains unknown how these cells acquire their position. Here, we show that the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn) displays agenesis of the CC and mislocation of the glial and neuronal guidepost cells. Using transplantation experiments, we demonstrate that agenesis of the CC is primarily caused by midline defects. These defects originate during telencephalic patterning and involve an up-regulation of Slit2 expression and altered Fgf and Wnt/ß-catenin signaling. Mutations in sprouty1/2 which mimic the changes in these signaling pathways cause a disorganization of midline guideposts and CC agenesis. Moreover, a partial recovery of midline abnormalities in Pdn/Pdn;Slit2(-/-) embryos mutants confirms the functional importance of correct Slit2 expression levels for callosal development. Hence, Gli3 controlled restriction of Fgf and Wnt/ß-catenin signaling and of Slit2 expression is crucial for positioning midline guideposts and callosal development.


Assuntos
Corpo Caloso/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Telencéfalo/crescimento & desenvolvimento , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/fisiopatologia , Animais , Encéfalo/crescimento & desenvolvimento , Análise por Conglomerados , Corpo Caloso/embriologia , Feminino , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Mutação/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Polidactilia/genética , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Telencéfalo/embriologia , Regulação para Cima/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína Gli3 com Dedos de Zinco , beta Catenina/fisiologia
8.
PLoS Genet ; 8(3): e1002606, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479201

RESUMO

The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.


Assuntos
Corpo Caloso , Proteínas de Ligação a DNA , Fator 8 de Crescimento de Fibroblasto , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Neurônios , Fatores de Transcrição , Animais , Axônios/metabolismo , Axônios/fisiologia , Corpo Caloso/crescimento & desenvolvimento , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Mutantes , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteína Gli3 com Dedos de Zinco
9.
Diabetes ; 56(4): 950-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17229940

RESUMO

The transcription factor regulatory factor X (RFX)-3 regulates the expression of genes required for the growth and function of cilia. We show here that mouse RFX3 is expressed in developing and mature pancreatic endocrine cells during embryogenesis and in adults. RFX3 expression already is evident in early Ngn3-positive progenitors and is maintained in all major pancreatic endocrine cell lineages throughout their development. Primary cilia of hitherto unknown function present on these cells consequently are reduced in number and severely stunted in Rfx3(-/-) mice. This ciliary abnormality is associated with a developmental defect leading to a uniquely altered cellular composition of the islets of Langerhans. Just before birth, Rfx3(-/-) islets contain considerably less insulin-, glucagon-, and ghrelin-producing cells, whereas pancreatic polypeptide-positive cells are markedly increased in number. In adult mice, the defect leads to small and disorganized islets, reduced insulin production, and impaired glucose tolerance. These findings suggest that RFX3 participates in the mechanisms that govern pancreatic endocrine cell differentiation and that the presence of primary cilia on islet cells may play a key role in this process.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Ilhotas Pancreáticas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Cílios/fisiologia , Cílios/ultraestrutura , Cruzamentos Genéticos , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Grelina , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Knockout , Hormônios Peptídicos/análise , Gravidez , RNA Mensageiro/genética , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Células-Tronco/fisiologia , Proteína de Ligação a TATA-Box/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA