Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134193

RESUMO

The Caenorhabditis elegans E protein ortholog HLH-2 is required for the specification and function of the anchor cell, a unique, terminally differentiated somatic gonad cell that organizes uterine and vulval development. Initially, 4 cells-2 α cells and their sisters, the ß cells-have the potential to be the sole anchor cell. The ß cells rapidly lose anchor cell potential and invariably become ventral uterine precursor cells, while the 2 α cells interact via LIN-12/Notch to resolve which will be the anchor cell and which will become another ventral uterine precursor cell. HLH-2 protein stability is dynamically regulated in cells with anchor cell potential; initially present in all 4 cells, HLH-2 is degraded in presumptive ventral uterine precursor cells while remaining stable in the anchor cell. Here, we demonstrate that stability of HLH-2 protein is regulated by the activity of lin-12/Notch in both α and ß cells. Our analysis provides evidence that activation of LIN-12 promotes degradation of HLH-2 as part of a negative feedback loop during the anchor cell/ventral uterine precursor cell decision by the α cells, and that absence of lin-12 activity in ß cells increases HLH-2 stability and may account for their propensity to adopt the anchor cell fate in a lin-12 null background. We also performed an RNA interference screen of 232 ubiquitin-related genes and identified 7 genes that contribute to HLH-2 degradation in ventral uterine precursor cells; however, stabilizing HLH-2 by depleting ubiquitin ligases in a lin-12(+) background does not result in supernumerary anchor cells, suggesting that LIN-12 activation does not oppose hlh-2 activity solely by causing HLH-2 protein degradation. Finally, we provide evidence for lin-12-independent transcriptional regulation of hlh-2 in ß cells that correlates with known differences in POP-1/TCF levels and anchor cell potential between α and ß cells. Together, our results indicate that hlh-2 activity is regulated at multiple levels to restrict the anchor cell fate to a single cell.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Receptores Notch/genética , Receptores Notch/metabolismo , Diferenciação Sexual , Vulva/metabolismo
2.
Curr Biol ; 29(18): 3094-3100.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31402303

RESUMO

Stochastic mechanisms diversify cell fate in organisms ranging from bacteria to humans [1-4]. In the anchor cell/ventral uterine precursor cell (AC/VU) fate decision during C. elegans gonadogenesis, two "α cells," each with equal potential to be an AC or a VU, interact via LIN-12/Notch and its ligand LAG-2/DSL [5, 6]. This LIN-12/Notch-mediated interaction engages feedback mechanisms that amplify a stochastic initial difference between the two α cells, ensuring that the cell with higher lin-12 activity becomes the VU while the other becomes the AC [7-9]. The initial difference between the α cells was originally envisaged as a random imbalance from "noise" in lin-12 expression/activity [6]. However, subsequent evidence that the relative birth order of the α cells biases their fates suggested other factors may be operating [7]. Here, we investigate the nature of the initial difference using high-throughput lineage analysis [10]; GFP-tagged endogenous LIN-12, LAG-2, and HLH-2, a conserved transcription factor that orchestrates AC/VU development [7, 11]; and tissue-specific hlh-2 null alleles. We identify two stochastic elements: relative birth order, which largely originates at the beginning of the somatic gonad lineage three generations earlier, and onset of HLH-2 expression, such that the α cell whose parent expressed HLH-2 first is biased toward the VU fate. We find that these elements are interrelated, because initiation of HLH-2 expression is linked to the birth of the parent cell. Finally, we provide a potential deterministic mechanism for the HLH-2 expression bias by showing that hlh-2 is required for LIN-12 expression in the α cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gônadas/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Genes Reporter , Gônadas/citologia , Gônadas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Organogênese , Receptores Notch/genética , Receptores Notch/metabolismo , Diferenciação Sexual , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA