Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 12(1): 22255, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564457

RESUMO

Triple-negative breast cancer (TNBC) is associated with high mortality due to the high expression of pro-inflammatory cytokines and lack of targeted therapies. N-acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that promotes inflammatory responses through the deactivation of Palmitoylethanolamide (PEA), an endogenous bioactive lipid mediator. Here, we examined NAAA expression in TNBC cells (MDA-MB-231 and MDA-MB-BrM2 cells) and the effects of NAAA inhibition on TNBC tumor growth, using a selective NAAA inhibitor AM11095 (IC50 = 20 nM). TNBC cells expressed elevated levels of full-length and splice mRNAs naaa variants. TNBC cells also express the N-acyl ethanol amides and elevated levels of the two fatty acid cores arachidonic (AA) and docosahexaenoic (DHA). PEA or AM11095 inhibited the secretion of IL-6 and IL-8, reduced the activation of the NF-kB pathway, decreased the expression of VEGF and Placental growth factor (PLGF) in TNBCs, and inhibited tumor cell migration in vitro. Using cellular magnetic resonance imaging (MRI), body images of mice administered with human MDA-MB-BrM2 cells treated with AM11095 showed a significant decrease in tumor numbers with a lower volume of tumors and increased mice survival. Mice untreated or treated with vehicle control showed a high number of tumors with high volumes in multiple organs. Thus, NAAA inhibition may constitute a potential therapeutic approach in the management of TNBC-associated inflammation and tumor growth.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Feminino , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Amidoidrolases/genética , Amidoidrolases/metabolismo , Fator de Crescimento Placentário/uso terapêutico , Inflamação/tratamento farmacológico , Amidas/uso terapêutico
2.
Sci Rep ; 12(1): 5328, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351947

RESUMO

While the prevalence of breast cancer metastasis in the brain is significantly higher in triple negative breast cancers (TNBCs), there is a lack of novel and/or improved therapies for these patients. Monoacylglycerol lipase (MAGL) is a hydrolase involved in lipid metabolism that catalyzes the degradation of 2-arachidonoylglycerol (2-AG) linked to generation of pro- and anti-inflammatory molecules. Here, we targeted MAGL in TNBCs, using a potent carbamate-based inhibitor AM9928 (hMAGL IC50 = 9 nM) with prolonged pharmacodynamic effects (46 h of target residence time). AM9928 blocked TNBC cell adhesion and transmigration across human brain microvascular endothelial cells (HBMECs) in 3D co-cultures. In addition, AM9928 inhibited the secretion of IL-6, IL-8, and VEGF-A from TNBC cells. TNBC-derived exosomes activated HBMECs resulting in secretion of elevated levels of IL-8 and VEGF, which were inhibited by AM9928. Using in vivo studies of syngeneic GFP-4T1-BrM5 mammary tumor cells, AM9928 inhibited tumor growth in the mammary fat pads and attenuated blood brain barrier (BBB) permeability changes, resulting in reduced TNBC colonization in brain. Together, these results support the potential clinical application of MAGL inhibitors as novel treatments for TNBC.


Assuntos
Monoacilglicerol Lipases , Neoplasias de Mama Triplo Negativas , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação , Monoacilglicerol Lipases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
3.
Cell ; 180(4): 655-665.e18, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004463

RESUMO

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Animais , Células CHO , Agonistas de Receptores de Canabinoides/química , Canabinoides/química , Canabinoides/farmacologia , Linhagem Celular Tumoral , Colesterol/química , Colesterol/farmacologia , Cricetinae , Cricetulus , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
4.
Molecules ; 24(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581433

RESUMO

In earlier work, we reported a novel class of CB2 selective ligands namely cannabilactones. These compounds carry a dimethylheptyl substituent at C3, which is typical for synthetic cannabinoids. In the current study with the focus on the pharmacophoric side chain at C3 we explored the effect of replacing the C1'-gem-dimethyl group with the bulkier cyclopentyl ring, and, we also probed the chain's length and terminal carbon substitution with bromo or cyano groups. One of the analogs synthesized namely 6-[1-(1,9-dihydroxy-6-oxo-6H-benzo[c]chromen-3-yl) cyclopentyl] hexanenitrile (AM4346) has very high affinity (Ki = 4.9 nM) for the mouse CB2 receptor (mCB2) and 131-fold selectivity for that target over the rat CB1 (rCB1). The species difference in the affinities of AM4346 between the mouse (m) and the human (h) CB2 receptors is reduced when compared to our first-generation cannabilactones. In the cyclase assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 3.7 ± 1.5 nM, E(max) = 89%). We have also extended our structure-activity relationship (SAR) studies to include biphenyl synthetic intermediates that mimic the structure of the phytocannabinoid cannabinodiol.


Assuntos
Canabinoides/síntese química , Lactonas/síntese química , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Canabinoides/química , Canabinoides/farmacologia , Células HEK293 , Humanos , Lactonas/química , Lactonas/farmacologia , Camundongos , Estrutura Molecular , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Especificidade da Espécie , Relação Estrutura-Atividade
5.
Cell ; 176(3): 459-467.e13, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30639103

RESUMO

The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257's unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.


Assuntos
Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/ultraestrutura , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Desenho de Fármacos , Endocanabinoides , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/química , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Células Sf9 , Relação Estrutura-Atividade
6.
J Med Chem ; 61(19): 8639-8657, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196704

RESUMO

The synthesis of potent metabolically stable endocannabinoids is challenging. Here we report a chiral arachidonoyl ethanolamide (AEA) analogue, namely, (13 S,1' R)-dimethylanandamide (AMG315, 3a), a high affinity ligand for the CB1 receptor ( Ki of 7.8 ± 1.4 nM) that behaves as a potent CB1 agonist in vitro (EC50 = 0.6 ± 0.2 nM). (13 S,1' R)-dimethylanandamide is the first potent AEA analogue with significant stability for all endocannabinoid hydrolyzing enzymes as well as the oxidative enzymes COX-2. When tested in vivo using the CFA-induced inflammatory pain model, 3a behaved as a more potent analgesic when compared to endogenous AEA or its hydrolytically stable analogue AM356. This novel analogue will serve as a very useful endocannabinoid probe.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Analgésicos/química , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Estabilidade Enzimática , Adjuvante de Freund/toxicidade , Células HEK293 , Humanos , Hiperalgesia/enzimologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Ratos
7.
Bioorg Med Chem ; 26(18): 4963-4970, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30122284

RESUMO

New oximes short-acting CB1 agonists were explored by the introduction of an internal oxime and polar groups at the C3 alkyl tail of Δ8-THC. The scope of the research was to drastically alter two important physicochemical properties hydrophobicity (log P) and topological surface area (tPSA) of the compound, which play a critical role in tissue distribution and sequestration (depot effect). Key synthesized analogs demonstrated sub-nanomolar affinity for CB1, marked reduction in hydrophobicity (ClogP∼2.5-3.5 vs 9.09 of Δ8-THC-DMH), and found to function as either agonists (trans-oximes) or neutral antagonists (cis-oximes) in a cAMP functional assay. All oxime analogs showed comparable affinity at the CB2 receptor, but surprisingly they were found to function as inverse agonists for CB2. In behavioral studies (i.e. analgesia, hypothermia) trans-oxime 8a exhibited a predictable fast onset (∼20 min) and short duration of pharmacological action (∼180 min), in contrast to the very prolonged duration of Δ8-THC-DMH (>24 h), thus limiting the potential for severe psychotropic side-effects associated with persistent activation of the CB1 receptor. We have conducted 100 ns molecular dynamic (MD) simulations of CB1 complexes with AM11542 (CB1 agonist) and both trans-8a and cis-8b isomeric oximes. These studies revealed that the C3 alkyl tail of cis-8b orientated within the CB1 binding pocket in a manner that triggered a conformational change that stabilized the CB1 receptor at its inactive-state (antagonistic functional effect). In contrast, the trans-8a isomer's conformation was coincided with that of the AM11542 CB1 agonist-bound structure, stabilizing the CB1 receptor at the active-state (agonistic functional effect). We have selected oxime trans-8a based on its potency for CB1, and favorable pharmacodynamic profile, such as fast onset and predictable duration of pharmacological action, for evaluation in pre-clinical models of anorexia nervosa.


Assuntos
Oximas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Área Sob a Curva , Comportamento Animal/efeitos dos fármacos , Biotransformação , Células HEK293 , Humanos , Hipotermia/induzido quimicamente , Camundongos , Oximas/química , Oximas/farmacocinética , Ratos , Relação Estrutura-Atividade
8.
Protein Expr Purif ; 145: 108-117, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29253688

RESUMO

N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) enzyme with a catalytic cysteine residue that has highest activity at acidic pH. The most prominent substrate hydrolyzed is palmitoylethanolamine (PEA), which regulates inflammation. Inhibitors of NAAA have been shown to increase endogenous levels of PEA, and are of interest as potential treatments for inflammatory disorders and other maladies. Currently, there are no X-ray or NMR structures of NAAA available to inform medicinal chemistry. Additionally, there are a limited number of enzyme structures available that are within the Ntn-hydrolase family, have a catalytic cysteine residue, and have a high sequence homology. For these reasons, we developed expression and purification methods for the production of enzyme samples amenable to structural characterization. Mammalian cells are necessary for post-translational processing, including signal sequence cleavage and glycosylation, that are required for a correctly folded zymogen before conversion to active, and mature enzyme. We have identified an expression construct, mammalian cell line, specific media and additives to express and secrete hNAAA zymogen and we further optimized propagation conditions and show this secretion method is suitable for isotopic labeling of the protein. We refined purification methods to achieve a high degree of protein purity potentially suited to crystallography. Glycosylated proteins can present challenges to biophysical methods. Therefore we deglycosylate the enzyme and show that the activity of the mature enzyme is not affected by deglycosylation.


Assuntos
Amidoidrolases/química , Expressão Gênica , Amidoidrolases/metabolismo , Linhagem Celular , Glicosilação , Humanos , Hidrólise , Marcação por Isótopo
9.
J Med Chem ; 59(14): 6903-19, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367336

RESUMO

In pursuit of safer controlled-deactivation cannabinoids with high potency and short duration of action, we report the design, synthesis, and pharmacological evaluation of novel C9- and C11-hydroxy-substituted hexahydrocannabinol (HHC) and tetrahydrocannabinol (THC) analogues in which a seven atom long side chain, with or without 1'-substituents, carries a metabolically labile 2',3'-ester group. Importantly, in vivo studies validated our controlled deactivation approach in rodents and non-human primates. The lead molecule identified here, namely, butyl-2-[(6aR,9R,10aR)-1-hydroxy-9-(hydroxymethyl)-6,6-dimethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-3-yl]-2-methylpropanoate (AM7499), was found to exhibit remarkably high in vitro and in vivo potency with shorter duration of action than the currently existing classical cannabinoid agonists.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinol/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/química , Canabinol/análogos & derivados , Canabinol/química , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Saimiri , Relação Estrutura-Atividade
10.
Psychopharmacology (Berl) ; 233(12): 2265-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048155

RESUMO

RATIONALE: Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. OBJECTIVE: This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. MATERIALS AND METHODS: AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. RESULTS: Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. CONCLUSIONS: Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea.


Assuntos
Amidoidrolases/antagonistas & inibidores , Monoacilglicerol Lipases/antagonistas & inibidores , Náusea/tratamento farmacológico , Náusea/enzimologia , Vômito Precoce/tratamento farmacológico , Vômito Precoce/enzimologia , Doença Aguda , Amidoidrolases/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Monoacilglicerol Lipases/metabolismo , Ratos , Ratos Sprague-Dawley
11.
J Med Chem ; 56(24): 10142-57, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24286207

RESUMO

We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.


Assuntos
Canabinoides/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Canabinoides/síntese química , Canabinoides/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA