Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasit Vectors ; 15(1): 280, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932088

RESUMO

BACKGROUND: Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. METHODS: Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. RESULTS: The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. CONCLUSIONS: The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Europa (Continente) , Genótipo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , Piretrinas/farmacologia
2.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34865033

RESUMO

Dispersion expands the distribution of invasive species and as such, it is a key factor of the colonization process. Aedes japonicus japonicus (Theobald, 1901) is an invasive species of mosquito and a vector of various viruses. It was detected in the northeast of France in 2014. The population of this species can expand its distribution by several kilometers per year. However, though flight capacities play an active part in the dispersion of Ae. japonicus, they remain unknown for this species. In this study, we investigated the flight capacities of Ae. japonicus in a laboratory setting using the flight mill technique. We evaluated the influence of age on flight. We recorded videos of individual flights with a camera mounted on Raspberry Pi. We extracted data on distance, duration, and speed of flight using the Toxtrac and Boris software. Our analysis showed a median flight distance of 438 m with a maximum of 11,466 m. Strong flyers, which represented 10% of the females tested, flew more than 6,115 m during 4 h and 28 min at a speed of 1.7 km per h. As suspected, Ae. japonicus is a stronger flyer than the other invasive species Aedes albopictus (Skuse, 1894) (Diptera: Culicidae). To our knowledge, this is the first flight mill study conducted on Ae. japonicus and therefore the first evaluation of its flight capacity. In the future, the flight propensity of Ae. japonicus determined in this study can be included as a parameter to model the colonization process of this invasive vector species.


Assuntos
Aedes , Voo Animal , Distribuição Animal , Animais , Feminino , França , Espécies Introduzidas , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA