Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11651, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773267

RESUMO

Efficient fiber-chip coupling interfaces are critically important for integrated photonics. Since surface gratings diffract optical signals vertically out of the chip, these couplers can be placed anywhere in the circuit allowing for wafer-scale testing. While state-of-the-art grating couplers have been developed for silicon-on-insulator (SOI) waveguides, the moderate index contrast of silicon nitride (SiN) presents an outstanding challenge for implementing efficient surface grating couplers on this platform. Due to the reduced grating strength, a longer structure is required to radiate the light from the chip which produces a diffracted field that is too wide to couple into the fiber. In this work, we present a novel grating coupler architecture for silicon nitride photonic integrated circuits that utilizes an amorphous silicon (α-Si) overlay. The high refractive index of the α-Si overlay breaks the coupler's vertical symmetry which increases the directionality. We implement subwavelength metamaterial apodization to optimize the overlap of the diffracted field with the optical fiber Gaussian mode profile. Furthermore, the phase of the diffracted beam is engineered to focalize the field into an SMF-28 optical fiber placed 55 µm above the surface of the chip. The coupler was designed using rigorous three-dimensional (3D) finite-difference time-domain (FDTD) simulations supported by genetic algorithm optimization. Our grating coupler has a footprint of 26.8 × 32.7 µm2 and operates in the O-band centered at 1.31 µm. It achieves a high directionality of 85% and a field overlap of 90% with a target fiber mode size of 9.2 µm at the focal plane. Our simulations predict a peak coupling efficiency of - 1.3 dB with a 1-dB bandwidth of 31 nm. The α-Si/SiN grating architecture presented in this work enables the development of compact and efficient optical interfaces for SiN integrated photonics circuits with applications including optical communications, sensing, and quantum photonics.

2.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607117

RESUMO

Silicon nitride (Si3N4) is an ideal candidate for the development of low-loss photonic integrated circuits. However, efficient light coupling between standard optical fibers and Si3N4 chips remains a significant challenge. For vertical grating couplers, the lower index contrast yields a weak grating strength, which translates to long diffractive structures, limiting the coupling performance. In response to the rise of hybrid photonic platforms, the adoption of multi-layer grating arrangements has emerged as a promising strategy to enhance the performance of Si3N4 couplers. In this work, we present the design of high-efficiency surface grating couplers for the Si3N4 platform with an amorphous silicon (α-Si) overlay. The surface grating, fully formed in an α-Si waveguide layer, utilizes subwavelength grating (SWG)-engineered metamaterials, enabling simple realization through single-step patterning. This not only provides an extra degree of freedom for controlling the fiber-chip coupling but also facilitates portability to existing foundry fabrication processes. Using rigorous three-dimensional (3D) finite-difference time-domain (FDTD) simulations, a metamaterial-engineered grating coupler is designed with a coupling efficiency of -1.7 dB at an operating wavelength of 1.31 µm, with a 1 dB bandwidth of 31 nm. Our proposed design presents a novel approach to developing high-efficiency fiber-chip interfaces for the silicon nitride integration platform for a wide range of applications, including datacom and quantum photonics.

3.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610496

RESUMO

Many techniques have been studied for recovering information from shared media such as optical fiber that carries different types of communication, sensing, and data streaming. This article focuses on a simple method for retrieving the targeted information with the least necessary number of significant samples when using statistical population sampling. Here, the focus is on the statistical denoising and detection of the fiber Bragg grating (FBG) power spectra. The impact of the two-sided and one-sided sliding window technique is investigated. The size of the window is varied up to one-half of the symmetrical FBG power spectra bandwidth. Both, two- and one-sided small population sampling techniques were experimentally investigated. We found that the shorter sliding window delivered less processing latency, which would benefit real-time applications. The calculated detection thresholds were used for in-depth analysis of the data we obtained. It was found that the normality three-sigma rule does not need to be followed when a small population sampling is used. Experimental demonstrations and analyses also showed that novel denoising and statistical threshold detection do not depend on prior knowledge of the probability distribution functions that describe the FBG power spectra peaks and background noise. We have demonstrated that the detection thresholds' adaptability strongly depends on the mean and standard deviation values of the small population sampling.

4.
Sci Rep ; 13(1): 17467, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838803

RESUMO

Silicon nitride (Si3N4) waveguides become an appealing choice to realize complex photonic integrated circuits for applications in telecom/datacom transceivers, sensing, and quantum information sciences. However, compared to high-index-contrast silicon-on-insulator platform, the index difference between the Si3N4 waveguide core and its claddings is more moderate, which adversely affects the development of vertical grating-coupled optical interfaces. Si3N4 grating couplers suffer from the reduced strength, therefore it is more challenging to radiate all the waveguide power out of the grating within a beam size that is comparable to the mode field diameter of standard optical fibers. In this work, we present, by design and experiments, a library of low-loss and fabrication-tolerant surface grating couplers, operating at 1.55 µm wavelength range and standard SMF-28 fiber. Our designs are fabricated on 400 nm Si3N4 platform using single-etch fabrication and foundry-compatible low-pressure chemical vapor deposition wafers. Experimentally, the peak coupling loss of - 4.4 dB and - 3.9 dB are measured for uniform couplers, while apodized grating couplers yield fiber-chip coupling loss of - 2.9 dB, without the use of bottom mirrors, additional overlays, and multi-layered grating arrangements. Beside the single-hero demonstrations, over 130 grating couplers were realized and tested, showing an excellent agreement with finite difference time domain designs and fabrication-robust performance. Demonstrated grating couplers are promising for Si3N4 photonic chip prototyping by using standard optical fibers, leveraging low-cost and foundry-compatible fabrication technologies, essential for stable and reproducible large-volume device development.

5.
Opt Lett ; 48(15): 4017-4020, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527107

RESUMO

Surface grating couplers are an important component for interfacing photonic integrated circuits with optical fibers. However, conventional coupler designs typically provide limited performance due to low directionality and poor fiber-to-grating field overlap. The efficiency can be improved by using non-uniform grating structures at the expense of small critical dimensions complicating the fabrication process. While uniform gratings can alleviate this constraint, they produce an exponentially decaying near-field with the Gaussian fiber mode overlap limited to a theoretical maximum of 80%. In this work, we propose a uniform grating coupler that circumvents this field overlap limitation. This is achieved by leveraging inter-layer mode interference through a virtual directional coupler effect in a hybrid amorphous-silicon (α-Si) on silicon nitride (Si3N4) platform. By optimizing the inter-layer gap and grating geometry, a near-Gaussian profile of the out-radiated beam is achieved, resulting in an unprecedented grating-to-fiber overlap of 96%. The full three-dimensional (3D) finite-difference time-domain (FDTD) simulations show a high directionality of 84% and a record coupling loss of -1.27 dB with a 1-dB bandwidth of 20 nm for the uniform grating coupler design. Our device is designed for a wavelength of 950 nm aimed for use in hybrid quantum photonic integrated circuits using III-V quantum dot single photon sources.

6.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015897

RESUMO

Light detection and ranging systems based on optical phased arrays and integrated silicon photonics have sparked a surge of applications over the recent years. This includes applications in sensing, free-space communications, or autonomous vehicles, to name a few. Herein, we report a design of two-dimensional optical phased arrays, which are arranged in a grid of concentric rings. We numerically investigate two designs composed of 110 and 820 elements, respectively. Both single-wavelength (1550 nm) and broadband multi-wavelength (1535 nm to 1565 nm) operations are studied. The proposed phased arrays enable free-space beam steering, offering improved performance with narrow beam divergences of only 0.5° and 0.22° for the 110-element and 820-element arrays, respectively, with a main-to-sidelobe suppression ratio higher than 10 dB. The circular array topology also allows large element spacing far beyond the sub-wavelength-scaled limits that are present in one-dimensional linear or two-dimensional rectangular arrays. Under a single-wavelength operation, a solid-angle steering between 0.21π sr and 0.51π sr is obtained for 110- and 820-element arrays, respectively, while the beam steering spans the range of 0.24π sr and 0.57π sr for a multi-wavelength operation. This work opens new opportunities for future optical phased arrays in on-chip photonic applications, in which fast, high-resolution, and broadband beam steering is necessary.

7.
Nanomaterials (Basel) ; 12(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683792

RESUMO

On-chip optical phased arrays (OPAs) are the enabling technology for diverse applications, ranging from optical interconnects to metrology and light detection and ranging (LIDAR). To meet the required performance demands, OPAs need to achieve a narrow beam width and wide-angle steering, along with efficient sidelobe suppression. A typical OPA configuration consists of either one-dimensional (1D) linear or two-dimensional (2D) rectangular arrays. However, the presence of grating sidelobes from these array configurations in the far-field pattern limits the aliasing-free beam steering, when the antenna element spacing is larger than half of a wavelength. In this work, we provide numerical analysis for 2D circular OPAs with radially arranged nano-antennas. The circular array geometry is shown to effectively suppress the grating lobes, expand the range for beam steering and obtain narrower beamwidths, while increasing element spacing to about 10 µm. To allow for high coupling efficiency, we propose the use of a central circular grating coupler to feed the designed circular OPA. Leveraging radially positioned nano-antennas and an efficient central grating coupler, our design can yield an aliasing-free azimuthal field of view (FOV) of 360°, while the elevation angle FOV is limited by the far-field beamwidth of the nano-antenna element and its array arrangement. With a main-to-sidelobe contrast ratio of 10 dB, a 110-element OPA offers an elevation FOV of 5° and an angular beamwidth of 1.14°, while an 870-element array provides an elevation FOV up to 20° with an angular beamwidth of 0.35°. Our analysis suggests that the performance of the circular OPAs can be further improved by integrating more elements, achieving larger aliasing-free FOV and narrower beamwidths. Our proposed design paves a new way for the development of on-chip OPAs with large 2D beam steering and high resolutions in communications and LIDAR systems.

8.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322415

RESUMO

Polarization mode dispersion is recognized as a key factor limiting optical transmission systems, particularly those fiber links that run at bit rates beyond 10 Gbps. In-line test and characterization of polarization mode dispersion are thus of critical importance to evaluate the quality of installed optical fibers that are in use for high-speed signal traffics. However, polarization-based effects in optical fibers are stochastic and quite sensitive to a range of environmental changes, including optical cable movements. This, in turn, gives rise to undesired variations in light polarization that adversely impair the quality of the signal transmission in the link. In this work, we elaborate on experimental testing and theoretical analysis to asses changes of polarization mode dispersion in optical fibers that are caused by environmental variations, here wind gusts in particular. The study was performed on commercially harnessed optical fibers installed within optical power ground wire cables, taking into account different weather conditions. More specifically, we showed that changes caused by wind gusts significantly influence the differential group delay and the principal state of polarization in those optical fibers. For this, we experimentally measured a number of parameters to characterize light polarization properties. Measurements were carried out on C-band operated fiber-optic link formed by 111-km-long power ground wire cables and 88 spectral channels, with a test time step of 1 min during 12 consecutive days. Variations in differential group delay allowed for sensitive testing of environmental changes with measured maxims up to 10 ps under the worst wind conditions. Moreover, measured parameters were used in a numerical model to assess the quality of transmitted high-bit-rate optical signals as a function of wind conditions. The analysis revealed a negligible impact of wind on a 10 Gbps transmission, while substantial influence was noticed for higher bit rates up to 100 Gbps. These results show promises for efficient sensing of environmental changes and subsequent monitoring of the quality of recently used fiber-optic link infrastructures.

9.
Opt Lett ; 44(18): 4578-4581, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517935

RESUMO

Wideband and polarization-independent wavelength filters with low sensitivity to temperature variations have great potential for wavelength division multiplexing applications. However, simultaneously achieving these metrics is challenging for silicon-on-insulator photonics technology. Here, we harness the reduced index contrast and the low thermo-optic coefficient of silicon nitride to demonstrate waveguide Bragg grating filters with wideband apolar rejection and low thermal sensitivity. Filter birefringence is reduced by judicious design of a triangularly shaped lateral corrugation. Based on this approach, we demonstrate silicon nitride Bragg filters with a measured polarization-independent 40 dB optical rejection with negligible off-band excess loss, and a sensitivity to thermal variations below 20 pm/°C.

10.
Opt Express ; 27(18): 26239-26250, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510482

RESUMO

The availability of low-loss optical interfaces to couple light between standard optical fibers and high-index-contrast silicon waveguides is essential for the development of chip-integrated nanophotonics. Input and output couplers based on diffraction gratings are attractive coupling solutions. Advanced grating coupler designs, with Bragg or metal mirror underneath, low- and high-index overlays, and multi-level or multi-layer layouts, have proven less useful due to customized or complex fabrication, however. In this work, we propose a rather simpler in design of efficient off-chip fiber couplers that provide a simulated efficiency up to 95% (-0.25 dB) at a wavelength of 1.55 µm. These grating couplers are formed with an L-shaped waveguide profile and synthesized subwavelength grating metamaterials. This concept jointly provides sufficient degrees of freedom to simultaneously control the grating directionality and out-radiated field profile of the grating mode. The proposed chip-to-fiber couplers promote robust sub-decibel coupling of light, yet contain device dimensions (> 120 nm) compatible with standard lithographic technologies presently available in silicon nanophotonic foundries. Fabrication imperfections are also investigated. Dimensional offsets of ± 15 nm in shallow-etch depth and ± 10 nm in linewidth's and mask misalignments are tolerated for a 1-dB loss penalty. The proposed concept is meant to be universal, which is an essential prerequisite for developing reliable and low-cost optical couplers. We foresee that the work on L-shaped grating couplers with sub-decibel coupling efficiencies could also be a valuable direction for silicon chip interfacing in integrated nanophotonics.

11.
Sci Rep ; 9(1): 5347, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926853

RESUMO

Sub-wavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the propagation of light. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size. Here, we present a new nanophotonic waveguide grating concept that exploits phase-matching engineering to suppress diffraction effects for a period three times larger than those with SWG approaches. This long-period grating not only facilitates fabrication, but also enables a new diffraction-less regime with additional degrees of freedom to control light propagation. More specifically, the proposed phase-matching engineering enables selective diffraction suppression, providing new tools to shape propagation in the grating. We harness this flexible diffraction control to yield single-mode propagation in, otherwise, highly multimode waveguides, and to implement Bragg filters that combine highly-diffractive and diffraction-less regions to dramatically increase light rejection. Capitalizing on this new concept, we experimentally demonstrate a Si membrane Bragg filter with record rejection value exceeding 60 dB. These results demonstrate the potential of the proposed long-period grating for the engineering of diffraction in nanophotonic waveguides and pave the way for the development of a new generation of high-performance Si photonics devices.

12.
Opt Express ; 26(26): 34366-34372, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650859

RESUMO

Taking advantage of unique molecular absorption lines in the mid-infrared fingerprint region and of the atmosphere transparency window (3-5 µm and 8-14 µm), mid-infrared silicon photonics has attracted more research activities with a great potential for applications in different areas, including spectroscopy, remote sensing, free-space communication and many others. However, the demonstration of resonant structures operating at long-wave infrared wavelengths still remains challenging. Here, we demonstrate Bragg grating-based Fabry-Perot resonators based on Ge-rich SiGe waveguides with broadband operation in the mid-infrared. Bragg grating waveguides are investigated first at different wavelengths from 5.4 µm up to 8.4 µm, showing a rejection band up to 21 dB. Integrated Fabry-Perot resonators are then demonstrated for the first time in the 8 µm-wavelength range, showing Q-factors as high as 2200. This first demonstration of integrated mid-infrared Fabry-Perot resonators paves the way towards resonance-enhanced sensing circuits and non-linear based devices at these wavelengths.

13.
Opt Express ; 25(16): 19468-19478, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041140

RESUMO

Controlling the group velocity dispersion of silicon nanophotonic waveguides has been recognized as a key ingredient to enhance the development of various on-chip optical applications. However, the strong wavelength dependence of the dispersion in waveguides implemented on the high index contrast silicon-on-insulator (SOI) platform substantially hinders their wideband operation, which in turn, limits their deployment. In this work, we exploit the potential of non-resonant sub-wavelength grating (SWG) nanostructures to perform a flexible and wideband control of dispersion in SOI waveguides. In particular, we demonstrated that the overall dispersion of the SWG-engineered metamaterial waveguides can be tailored across the transparency window of the SOI platform, keeping easy-to-handle single-etch step manufacturing. The SWG silicon waveguides overcladded by silicon nitride exhibit significant reduction of wavelength dependence of dispersion, yet providing intriguing and customizable synthesis of various attractive dispersion profiles. These include large normal up to low anomalous operation regimes, both of which could make a great promise for plethora of emerging applications in silicon photonics.

14.
Opt Express ; 25(16): 19487-19496, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041142

RESUMO

Germanium photodetectors are considered to be mature components in the silicon photonics device library. They are critical for applications in sensing, communications, or optical interconnects. In this work, we report on design, fabrication, and experimental demonstration of an integrated waveguide PIN photodiode architecture that calls upon lateral double Silicon/Germanium/Silicon (Si/Ge/Si) heterojunctions. This photodiode configuration takes advantage of the compatibility with contact process steps of silicon modulators, yielding reduced fabrication complexity for transmitters and offering high-performance optical characteristics, viable for high-speed and efficient operation near 1.55 µm wavelengths. More specifically, we experimentally obtained at a reverse voltage of 1V a dark current lower than 10 nA, a responsivity higher than 1.1 A/W, and a 3 dB opto-electrical cut-off frequency over 50 GHz. The combined benefits of decreased process complexity and high-performance device operation pave the way towards attractive integration strategies to deploy cost-effective photonic transceivers on silicon-on-insulator substrates.

15.
Opt Lett ; 42(17): 3439-3442, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957057

RESUMO

Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20 dB). A measured coupling efficiency of -2.7 dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.

16.
Opt Lett ; 41(18): 4324-7, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628388

RESUMO

A broad transparency range of its constituent materials and compatibility with standard fabrication processes make germanium-on-silicon (Ge-on-Si) an excellent platform for the realization of mid-infrared photonic circuits. However, the comparatively large Ge waveguide thickness and its moderate refractive index contrast with the Si substrate hinder the implementation of efficient fiber-chip grating couplers. We report for the first time, to the best of our knowledge, a single-etch Ge-on-Si grating coupler with an inversely tapered access stage, operating at a 3.8 µm wavelength. Optimized grating excitation yields a coupling efficiency of -11 dB (7.9%), the highest value reported for a mid-infrared Ge-on-Si grating coupler, with reflectivity below -15 dB (3.2%). The large periodicity of our higher-order grating design substantially relaxes the fabrication constraints. We also demonstrate that a focusing geometry allows a 10-fold reduction in inverse taper length, from 500 to 50 µm.

17.
Opt Express ; 24(12): 12893-904, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410309

RESUMO

We report, for the first time, on the design and experimental demonstration of fiber-chip surface grating couplers based on subwavelength grating engineered nanostructure operating in the low fiber chromatic dispersion window (around 1.3 µm wavelengths), which is of great interest for short-reach data communication applications. Our coupler designs meet the minimum feature size requirements of large-volume deep-ultraviolet stepper lithography processes. The fiber-chip couplers are implemented in a standard 220-nm-thick silicon-on-insulator (SOI) platform and are fabricated by using a single etch process. Several types of couplers are presented, specifically the uniform, the apodized, and the focusing designs. The measured peak coupling efficiency is -2.5 dB (56%) near the central wavelength of 1.3 µm. In addition, by utilizing the technique of the backside substrate metallization underneath the grating couplers, the coupling efficiency of up to -0.5 dB (89%) is predicted by Finite Difference Time Domain (FDTD) calculations.

18.
Opt Express ; 24(5): 5026-5038, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092331

RESUMO

Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO2 upper cladding thin high-index Si3N4 layers. The Si3N4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.

19.
Opt Lett ; 40(18): 4190-3, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371893

RESUMO

We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3 dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.

20.
Opt Express ; 23(17): 22628-35, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368230

RESUMO

Surface grating couplers are fundamental components in chip-based photonic devices to couple light between photonic integrated circuits and optical fibers. In this work, we report on a grating coupler with sub-decibel experimental coupling efficiency using a single etch process in a standard 220-nm silicon-on-insulator (SOI) platform. We specifically demonstrate a subwavelength metamaterial refractive index engineered nanostructure with backside metal reflector, with the measured peak fiber-chip coupling efficiency of -0.69 dB (85.3%) and 3 dB bandwidth of 60 nm. This is the highest coupling efficiency hitherto experimentally achieved for a surface grating coupler implemented in 220-nm SOI platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA